Вопрос задан 07.08.2018 в 11:44. Предмет Алгебра. Спрашивает Корчуганов Матвей.

5 в степени х+1 плюс 3 умножить на 5 в степени х-1 минус 6 умножить на 5 в степени х плюс 10 = 0

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Скиба Алина.
В уравнении ошибка. Проверьте правильность условия.
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для решения данного уравнения, мы должны объединить все слагаемые с одинаковыми степенями x.

Имеем уравнение: 5^x + 1 + 3 * 5^(x-1) - 6 * 5^x + 10 = 0.

Для начала, упростим выражение 3 * 5^(x-1): 3 * 5^(x-1) = 3 * (1/5) * 5^x = 3/5 * 5^x.

Теперь, упростим выражение -6 * 5^x: -6 * 5^x = -6 * 5^x.

Таким образом, уравнение примет вид: 5^x + 1 + 3/5 * 5^x - 6 * 5^x + 10 = 0.

Объединим слагаемые с одинаковыми степенями x: (5^x - 6 * 5^x) + 3/5 * 5^x + 1 + 10 = 0.

Упростим выражение (5^x - 6 * 5^x): (5^x - 6 * 5^x) = (1 - 6) * 5^x = -5 * 5^x.

Теперь, уравнение может быть записано в виде: -5 * 5^x + 3/5 * 5^x + 1 + 10 = 0.

Объединим слагаемые с одинаковыми степенями x: (-5 * 5^x + 3/5 * 5^x) + 1 + 10 = 0.

Упростим выражение (-5 * 5^x + 3/5 * 5^x): (-5 * 5^x + 3/5 * 5^x) = (-5 + 3/5) * 5^x = (-25/5 + 3/5) * 5^x = -22/5 * 5^x.

Теперь, уравнение принимает вид: -22/5 * 5^x + 1 + 10 = 0.

Сложим числа 1 и 10: 1 + 10 = 11.

Таким образом, уравнение

0 0

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос