
X2-x-20=0 Через дискриминант


Ответы на вопрос

Ответ: -4 и 5



Solving the Equation x^2 - x - 20 = 0 using the Discriminant
To solve the equation x^2 - x - 20 = 0 using the discriminant, we need to find the values of x that satisfy the equation. The discriminant is a mathematical term used to determine the nature of the solutions of a quadratic equation.
The general form of a quadratic equation is ax^2 + bx + c = 0, where a, b, and c are constants. In this case, the equation is x^2 - x - 20 = 0, so a = 1, b = -1, and c = -20.
The discriminant (D) is calculated using the formula D = b^2 - 4ac. If the discriminant is greater than zero (D > 0), the equation has two distinct real solutions. If the discriminant is equal to zero (D = 0), the equation has one real solution. If the discriminant is less than zero (D < 0), the equation has no real solutions.
Let's calculate the discriminant for the equation x^2 - x - 20 = 0:
D = (-1)^2 - 4 * 1 * (-20) = 1 + 80 = 81
Since the discriminant is greater than zero (D > 0), the equation has two distinct real solutions.
To find the solutions, we can use the quadratic formula:
x1 = (-b + √D) / (2a) x2 = (-b - √D) / (2a)
Plugging in the values, we get:
x1 = (-(-1) + √81) / (2 * 1) = (1 + 9) / 2 = 10 / 2 = 5 x2 = (-(-1) - √81) / (2 * 1) = (1 - 9) / 2 = -8 / 2 = -4
Therefore, the solutions to the equation x^2 - x - 20 = 0 are x = 5 and x = -4.
Answer: The solutions to the equation x^2 - x - 20 = 0, obtained using the discriminant, are x = 5 and x = -4.


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili