
Cоставьте квадратное уравнение по его корням х1=-2, х2= С помощью теоремы Виета


Ответы на вопрос




Forming a Quadratic Equation Using Vieta's Theorem
To form a quadratic equation using Vieta's theorem, we can use the following approach:
Given the roots of the quadratic equation as x1 = -2 and x2 = -8, we can use Vieta's theorem to form the quadratic equation.
Vieta's theorem states that for a quadratic equation of the form ax^2 + bx + c = 0 with roots x1 and x2, the sum of the roots is equal to -b/a and the product of the roots is equal to c/a.
Using Vieta's theorem, we can derive the quadratic equation as follows:
1. Sum of the roots: - The sum of the roots x1 and x2 is equal to -b/a. - In this case, x1 + x2 = -2 + (-8) = -10. - This gives us the equation: x1 + x2 = -b/a = -10.
2. Product of the roots: - The product of the roots x1 and x2 is equal to c/a. - In this case, x1 * x2 = (-2) * (-8) = 16. - This gives us the equation: x1 * x2 = c/a = 16.
Using the above information, we can form the quadratic equation as follows:
- The sum of the roots equation: x1 + x2 = -10 - The product of the roots equation: x1 * x2 = 16
By substituting the values of x1 + x2 and x1 * x2 into the equations, we can form the quadratic equation.
Quadratic Equation: - The quadratic equation formed using Vieta's theorem with roots x1 = -2 and x2 = -8 is: - x^2 - (-10)x + 16 = 0 - Simplifying, we get: x^2 + 10x + 16 = 0
Therefore, the quadratic equation is x^2 + 10x + 16 = 0, based on the roots x1 = -2 and x2 = -8.


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili