
Sin2x-sin3x+sinx/cos2x-cos3x+cos4x решите, пожалуйста


Ответы на вопрос




Problem Analysis
To solve the equation sin(2x) - sin(3x) + sin(x) / cos(2x) - cos(3x) + cos(4x), we need to simplify the expression and find the values of x that satisfy the equation.Simplifying the Expression
Let's simplify the expression step by step:1. Combine the terms with the same trigonometric functions: - sin(2x) - sin(3x) + sin(x) / cos(2x) - cos(3x) + cos(4x) - Rearrange the terms: (sin(2x) + sin(x)) / (cos(2x) - cos(3x) + cos(4x)) - sin(3x) - Apply the sum-to-product trigonometric identities: 2sin(x)cos(x) + sin(x) / 2cos^2(x) - 1 + cos^2(x) - sin^2(x) - Simplify further: 2sin(x)cos(x) + sin(x) / 2cos^2(x) - sin^2(x) - Apply the Pythagorean identity: 2sin(x)cos(x) + sin(x) / 2(1 - sin^2(x)) - sin^2(x) - Simplify: 2sin(x)cos(x) + sin(x) / 2 - sin^3(x) / 2 - sin^2(x)
2. Combine like terms: 2sin(x)cos(x) + sin(x) - sin^3(x) / 2 - sin^2(x) / 2
3. Factor out sin(x): sin(x)(2cos(x) + 1 - sin^2(x) / 2 - sin(x) / 2)
4. Apply the Pythagorean identity again: sin(x)(2cos(x) + 1 - (1 - cos^2(x)) / 2 - sin(x) / 2) sin(x)(2cos(x) + 1 - 1 + cos^2(x) / 2 - sin(x) / 2) sin(x)(cos^2(x) + cos(x) - sin(x) / 2)
5. Simplify further: sin(x)(cos^2(x) + cos(x) - sin(x) / 2)
Solving the Equation
To solve the equation, we need to find the values of x that make the expression equal to zero. Therefore, we set the expression equal to zero and solve for x:sin(x)(cos^2(x) + cos(x) - sin(x) / 2) = 0
To find the values of x, we set each factor equal to zero and solve for x:
1. sin(x) = 0 - This occurs when x = 0, π, 2π, 3π, ...
2. cos^2(x) + cos(x) - sin(x) / 2 = 0 - This equation does not have a simple algebraic solution. We can use numerical methods or graphing to find approximate solutions.
Conclusion
The equation sin(2x) - sin(3x) + sin(x) / cos(2x) - cos(3x) + cos(4x) simplifies to sin(x)(cos^2(x) + cos(x) - sin(x) / 2). The values of x that satisfy the equation are x = 0, π, 2π, 3π, ... and the solutions to the equation cos^2(x) + cos(x) - sin(x) / 2 = 0 can be found using numerical methods or graphing.

Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili