Вопрос задан 06.12.2023 в 05:51. Предмет Алгебра. Спрашивает Елькина Лена.

Log6 ( x - 2) + log6(x – 11) = 2

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Воробьёв Миша.

.................................................................................


0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Решение логарифмического уравнения

Для решения уравнения log6(x - 2) + log6(x - 11) = 2 мы можем воспользоваться свойствами логарифмов и преобразовать его в эквивалентное уравнение вида alogb(c) = d, где a, b, c и d - числа.

Шаг 1: Применение свойств логарифмов Сначала мы можем объединить два логарифма с одинаковым основанием, используя свойство логарифмов logb(m) + logb(n) = logb(m*n):

log6((x - 2)*(x - 11)) = 2

Шаг 2: Преобразование уравнения Теперь мы можем преобразовать логарифмическое уравнение в экспоненциальное уравнение, используя определение логарифма:

6^2 = (x - 2)*(x - 11)

Шаг 3: Решение уравнения Решим полученное квадратное уравнение: 36 = x^2 - 13x + 22 x^2 - 13x - 14 = 0

Теперь мы можем решить это квадратное уравнение, например, используя квадратное уравнение или факторизацию.

Шаг 4: Решение квадратного уравнения Мы можем решить квадратное уравнение x^2 - 13x - 14 = 0, используя квадратное уравнение или факторизацию.

Например, используя квадратное уравнение, мы получим: x = (-(-13) ± √((-13)^2 - 4*1*(-14))) / (2*1) x = (13 ± √(169 + 56)) / 2 x = (13 ± √225) / 2 x = (13 ± 15) / 2

Таким образом, получаем два возможных значения x: x1 = (13 + 15) / 2 = 14 x2 = (13 - 15) / 2 = -1

Ответ: Уравнение log6(x - 2) + log6(x - 11) = 2 имеет два корня: x1 = 14 и x2 = -1.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос