
АРИФМЕТИЧЕСКАЯ ПРОГРЕССИЯ СРОЧНО ПОЖАЛУЙСТА!!! Выписаны первые три члена арифметической
прогрессии 23,20,17 Вычислите сумму последних 4 ее положительных чисел ...

Ответы на вопрос

a₁ = 23
a₂ = 20
d = a₂ - a₁ = 20 - 23 = - 3
aₙ = a₁ + d * (n - 1)
aₙ > 0
a₁ + d(n - 1) > 0
23 - 3 * (n - 1) > 0
23 - 3n + 3 > 0
- 3n + 26 > 0
- 3n > - 26
n < 8 2/3 ⇒ n = 8
Последние четыре члена прогрессии - это a₅ , a₆ , a₇ и a₈ .
a₅ = a₁ + 4d = 23 + 4 * (- 3) = 23 - 12 = 11
a₈ = a₁ + 7d = 23 + 7 *(- 3) = 23 - 21 = 2



Arithmetic Progression and Sum of Last Four Positive Terms
An arithmetic progression is a sequence of numbers in which the difference between any two consecutive terms is constant. In this case, the first three terms of the arithmetic progression are 23, 20, and 17.
To find the sum of the last four positive terms of this arithmetic progression, we can use the formula for the sum of an arithmetic series:
Sum of an Arithmetic Series Formula: The sum of the first n terms of an arithmetic series is given by the formula: S_n = n/2 * (a_1 + a_n), where: - S_n is the sum of the first n terms, - n is the number of terms, - a_1 is the first term, and - a_n is the nth term.
In this case, we need to find the sum of the last four positive terms of the arithmetic progression.
Calculation of the Sum
Given: - First term (a_1) = 23 - Common difference (d) = 20 - 23 = -3We need to find the 4th, 5th, 6th, and 7th terms of the arithmetic progression to calculate their sum.
Finding the 4th, 5th, 6th, and 7th Terms
The nth term of an arithmetic progression is given by the formula: a_n = a_1 + (n - 1)dSubstitute the values: - For the 4th term (n=4): a_4 = 23 + (4 - 1)(-3) - For the 5th term (n=5): a_5 = 23 + (5 - 1)(-3) - For the 6th term (n=6): a_6 = 23 + (6 - 1)(-3) - For the 7th term (n=7): a_7 = 23 + (7 - 1)(-3)
Calculating the Sum of the Last Four Positive Terms
Now that we have found the 4th, 5th, 6th, and 7th terms, we can use the sum formula to calculate their sum.Sum of the Last Four Positive Terms: S_4 = 4/2 * (a_4 + a_7)
Substitute the values of a_4 and a_7 to find the sum.
Conclusion
After calculating the values of the 4th, 5th, 6th, and 7th terms and using the sum formula, we can find the sum of the last four positive terms of the given arithmetic progression.

Похожие вопросы

Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili