Вопрос задан 03.12.2023 в 00:36. Предмет Алгебра. Спрашивает Ільків Уляна.

Есть два бидона с молоком. Если из первого бидона перелить во второй 5 литров молока, то в обоих

бидонах молока станет поровну. Если из второго бидона перелить в первый 6 литров молока, то в первом станет в 6,5 раза больше молока, чем во втором. Сколько молока в каждом бидоне?
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Илларионов Виталий.

Объяснение:

В 1 11,5 2 4,5 ну вот ответ

0 0
Отвечает Верховный Даниил.

Ответ:

В первом бидоне 20 литров молока, во втором 10 литров молока

Объяснение:

В первом бидоне x литров молока, во втором y литров молока

x-5=y+5

x+6=6,5(y-6)

___________

x=y+10

y+10+6=6,5(y-6)

y+16=6,5y-39

5,5y=55

y=10

x=10+10=20

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Problem Analysis

We have two containers of milk. When 5 liters of milk are transferred from the first container to the second container, the amount of milk in both containers becomes equal. Then, when 6 liters of milk are transferred from the second container back to the first container, the amount of milk in the first container becomes 6.5 times greater than the amount of milk in the second container. We need to find the amount of milk in each container.

Solution

Let's assume the amount of milk in the first container is x liters and the amount of milk in the second container is y liters.

According to the problem, when 5 liters of milk are transferred from the first container to the second container, the amount of milk in both containers becomes equal. This can be represented by the equation:

x - 5 = y + 5 (Equation 1)

Next, when 6 liters of milk are transferred from the second container back to the first container, the amount of milk in the first container becomes 6.5 times greater than the amount of milk in the second container. This can be represented by the equation:

x + 6 = 6.5 * (y - 6) (Equation 2)

We can solve this system of equations to find the values of x and y.

Let's solve Equation 1 for x: x = y + 10 (Equation 3)

Substituting Equation 3 into Equation 2, we get: (y + 10) + 6 = 6.5 * (y - 6)

Simplifying the equation: y + 16 = 6.5y - 39

Bringing like terms together: 5.5y = 55

Dividing both sides by 5.5: y = 10

Substituting the value of y back into Equation 3, we can find x: x = 10 + 10 x = 20

Therefore, there are 20 liters of milk in the first container and 10 liters of milk in the second container.

Answer

There are 20 liters of milk in the first container and 10 liters of milk in the second container.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос