Вопрос задан 14.11.2023 в 14:09. Предмет Алгебра. Спрашивает Есинов Игорь.

1. Найдите стороны прямоугольника, площадь которого равна 36см2, а одна из сторон на 9 см больше

другой.​
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Беляев Сергей.

Пояснение: x^2—x в квадрате; a/b—дробь

Ответ:

1 сторона=12

2 сторона=3

Объяснение:

1.Составим уравнение.

x(x+9)=36

2.Раскроем скобки.

x^2+9x=36

3.Перенесем число.

x^2+9x-36=0

4.Найдем дискриминант.

D=(b) ^2-4*a*c—формула дискриминанта.

D=(9)^2-4*1*(-36)=81+144=225

5. Найдём корень.

___

/

√ 225=15 корень 225=15

6.Найдем неизвестные.

x1=-9-15/2=-6/2=-3 (не подходит сторона не может быть отрицательной)

x2=9+15=24/2=12 (подходит)

1 сторона=12

7.Найдем вторую сторону.

2 сторона=12-9=3

Проверка:

S=12*3=36см^2

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Пусть одна из сторон прямоугольника равна х см. Тогда другая сторона будет равна (x + 9) см, так как одна сторона на 9 см больше другой.

Площадь прямоугольника равна произведению длин его сторон, поэтому имеем:

36 = x * (x + 9)

Раскроем скобки:

36 = x^2 + 9x

Перенесем все в левую часть уравнения:

x^2 + 9x - 36 = 0

Теперь решим это квадратное уравнение. Для этого можно использовать формулу дискриминанта:

D = b^2 - 4ac

где a = 1, b = 9 и c = -36.

D = 9^2 - 4 * 1 * (-36) D = 81 + 144 D = 225

Так как D > 0, у нас будет два решения. Используем формулу для нахождения корней квадратного уравнения:

x = (-b ± √D) / 2a

x₁ = (-9 + √225) / 2 * 1 x₁ = (-9 + 15) / 2 x₁ = 6 / 2 x₁ = 3

x₂ = (-9 - √225) / 2 * 1 x₂ = (-9 - 15) / 2 x₂ = -24 / 2 x₂ = -12

Поскольку сторона не может быть отрицательной, отбросим второе решение. Значит, сторона прямоугольника равна 3 см, а другая сторона будет равна 3 + 9 = 12 см.

Итак, стороны прямоугольника равны 3 см и 12 см.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос