Вопрос задан 13.11.2023 в 15:35. Предмет Алгебра. Спрашивает Шемякин Саша.

10х+30/9х²-1 × 9х²-6х+1/5х+15 Помогите решить

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Груздев Егор.

Ответ:

ответ в фото

Объяснение:

пожалуйста)


0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Выражение состоит из нескольких частей, которые нужно поочередно решить и объединить результаты.

1. Разложим числитель первого слагаемого: 10х + 30 = 10х + 6х + 24 = 16х + 24

2. Разложим знаменатель первого слагаемого на множители: 9х² - 1 = (3х - 1)(3х + 1)

3. Разложим числитель второго слагаемого: 9х² - 6х + 1 = (3х - 1)²

4. Разложим знаменатель второго слагаемого на множители: 5х + 15 = 5(х + 3)

Теперь можем записать выражение в виде: (16х + 24) / ((3х - 1)(3х + 1)) + (3х - 1)² / (5(х + 3))

Чтобы сложить два слагаемых, нужно привести их к общему знаменателю: (16х + 24) / ((3х - 1)(3х + 1)) + (3х - 1)²(3х + 3) / (5(х + 3)(3х - 1)(3х + 1))

Теперь складываем числители: (16х + 24) + (3х - 1)²(3х + 3) = 16х + 24 + (9х² - 6х + 1)(3х + 3)

(9х² - 6х + 1)(3х + 3) можно раскрыть скобки, затем сложить и упростить: (9х² - 6х + 1)(3х + 3) = 27х³ + 27х² + 3х² - 2х - 3 + 1 = 27х³ + 30х² - 2х - 2

Теперь выражение примет вид: (16х + 24 + 27х³ + 30х² - 2х - 2) / (5(х + 3)(3х - 1)(3х + 1))

Дальнейшие упрощения зависят от цели задачи или дополнительных указаний. Если нужно упростить числитель или знаменатель до минимума, можно провести дополнительные вычисления.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос