Вопрос задан 10.05.2019 в 09:25. Предмет Алгебра. Спрашивает Пак Валерия.

Ребятки, помогите тема: рациональные числа пример: первый способ х=0, (9) 10х=9, (9) 10х-х=9,

(9)-0, (9) 9х=9 х=1 второй способ 10х=9, (9) 100х=99,(9) 100х-10х=99, (9)-9, (9) 90х=90 х=1 Нужно объяснение почему в обоих способах х=1
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Вайс Света.
Здесь два уравнения где 1)х=9/9=1; 2) х=90/90=1.
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Rational Numbers and the Given Examples

Rational numbers are numbers that can be expressed as a fraction of two integers, where the denominator is not zero. They can be written in the form p/q, where p and q are integers and q is not equal to zero. Rational numbers include integers, fractions, and terminating or repeating decimals.

Let's analyze the two given examples to understand why x = 1 in both cases.

First Method: x = 0, (9), 10x = 9, (9), 10x - x = 9, (9) - 0, (9), 9x = 9, x = 1

In this method, we start with the equation x = 0. Then, we multiply both sides of the equation by 10, which gives us 10x = 9. By subtracting x from both sides, we get 10x - x = 9x = 9. Finally, dividing both sides by 9, we find that x = 1.

Second Method: 10x = 9, (9), 100x = 99, (9), 100x - 10x = 90x = 99, (9) - 9, (9), 90x = 90, x = 1

In this method, we start with the equation 10x = 9. Then, we multiply both sides of the equation by 10, which gives us 100x = 99. By subtracting 10x from both sides, we get 100x - 10x = 90x = 99 - 9 = 90. Finally, dividing both sides by 90, we find that x = 1.

Explanation for x = 1 in both methods

In both methods, we can see that the equation simplifies to 9x = 9 or 90x = 90, which can be further simplified to x = 1. This means that in both cases, the value of x that satisfies the equation is 1.

It is important to note that these examples demonstrate specific equations and solutions. While they illustrate the concept of rational numbers, they do not provide a comprehensive understanding of all rational numbers. Rational numbers can have various forms and properties, and their study extends beyond these specific examples.

If you have any further questions or need clarification, feel free to ask!

0 0

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос