
Вопрос задан 09.11.2023 в 10:31.
Предмет Алгебра.
Спрашивает Вайсман Елена.
Сколько будет S_{5} =(5*(1-3^5))/(1-3)=


Ответы на вопрос

Отвечает Кучерявий Бодя.
Ответ:



Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.
Чтобы найти значение s_5, нам нужно подставить значение n = 5 в формулу для суммы арифметической прогрессии:
s_n = (a * (1 - r^n)) / (1 - r),
где: a - первый член прогрессии, r - знаменатель прогрессии, n - количество членов прогрессии.
В данном случае у нас есть:
a = 5 (первый член прогрессии), r = 3 (знаменатель прогрессии), n = 5 (количество членов прогрессии).
Подставляя значения, получаем:
s_5 = (5 * (1 - 3^5)) / (1 - 3).
Возводим 3 в степень 5:
s_5 = (5 * (1 - 243)) / (1 - 3).
Вычисляем выражение в скобках:
s_5 = (5 * (-242)) / (1 - 3).
Далее решаем деление:
s_5 = (-1210) / (-2).
Итак, s_5 = 605.
Таким образом, сумма первых 5 членов арифметической прогрессии равна 605.


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili