Вопрос задан 31.10.2023 в 03:20. Предмет Алгебра. Спрашивает Халикова Алия.

Y= |x|+3. y=-|x|-3. y=|x+3|.

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Изгагин Андрей.

Ответ:

y=|x|+3. y=-|x|-3. y=|x-3|.

0=|x|+3. 0=-|x|-3. 0=|x+3|

-|x|=3. |x|=-3. |x+3|=0

|x|=-3. x+3=0.

x=-3

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

I can answer your question in detail. You have given three equations of the form y = |x| + c, where c is a constant. These equations represent the graphs of absolute value functions, which are V-shaped curves that open upward or downward. The vertex of each curve is the point where x = -c and y = 0. The slope of the curve changes from negative to positive at the vertex.

The first equation is y = |x| + 3. This means that the curve has a vertex at (-3, 0) and opens upward. The graph looks like this:

![graph of y = |x| + 3]

The second equation is y = -|x| - 3. This means that the curve has a vertex at (3, 0) and opens downward. The graph looks like this:

![graph of y = -|x| - 3]

The third equation is y = |x + 3|. This means that the curve has a vertex at (-3, 0) and opens upward. The graph looks like this:

![graph of y = |x + 3]

You can see that the first and third equations have the same graph, but they are shifted horizontally by 3 units to the left or right. The second equation has a different graph, but it is reflected over the x-axis and shifted horizontally by 3 units to the right.

I hope this helps you understand the absolute value functions better. If you want to learn more about them, you can check out these websites:

- [Equation Solver - Mathway](https://www.mathway.com/Calculator/equation-solver) - [Algebra Calculator | Microsoft Math Solver](https://mathsolver.microsoft.com/en/algebra-calculator) - [Mathway | Algebra Problem Solver](https://www.mathway.com/algebra)

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос