
Вопрос задан 30.10.2023 в 03:56.
Предмет Алгебра.
Спрашивает Скорбач Егор.
Помогите решить, пожалуйста) 1. Решить тригонометрические уравнения: 1) √2 ѕіn х – 1 = 0 2) tgх/2
- √3 = 0 3) 2соѕ^2 х - 9ѕіnх + 3 = 0 4) 2соѕх + 5ѕіnх = 0 5) соѕ3х – соѕх = 0 6) ѕіn4х = ѕіn2х 7) 3ѕіn2х - 2ѕіnх ∙ соѕх = 1

Ответы на вопрос

Отвечает Юсупова Алина.
Ответ:
Объяснение:
1) sinx=1/V2 (V-корень), x=(-1)^n* p/4+pn (p=pi)
2) tgx/2=V3, x/2=p/3+pn, x=2p/3+2pn
3)2(1-sin^2x)-9sinx+3=0, 2-2sin^2x-9sinx+3=0,
2sin^2x+9sinx-5=0, D=81+8*5=121, sinx=(-9+11)/4=1/2, sinx=(-9-11)/4=-5(не подходит), т.к. |sinx|<=1, x=(-1)^n*p/6+pn
4) 2cosx+5sinx=0| :cosx не=0, 5tgx+2=0, tgx=-0,4
x=arctg(-0,4)+pn



Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.
1) √2sin(x) - 1 = 0
To solve this equation, we can isolate sin(x) by moving -1 to the other side:
√2sin(x) = 1
Now, divide both sides by √2:
sin(x) = 1/√2
Since sin(x) = 1/√2 is a special value, we can find the angle that satisfies this condition by using the unit circle or trigonometric identities.
In the unit circle, sin(x) = 1/√2 corresponds to π/4 or 45 degrees.
Therefore, the solution to this equation is:
x = π/4 + 2πn, where n is an integer.
2) tan(x/2) - √3 = 0
To solve this equation, we can isolate tan(x/2) by moving √3 to the other side:
tan(x/2) = √3
Now, take the inverse tangent (arctan) of both sides to find the angle:
x/2 = arctan(√3)
To find the exact value of arctan(√3), we can use the special triangles. In the 30-60-90 triangle, tan(π/3) = √3.
So, arctan(√3) = π/3.
Multiplying both sides by 2:
x = 2(arctan(√3))
Therefore, the solution to this equation is:
x = 2(π/3) + 2πn, where n is an integer.
3) 2cos^2(x) - 9sinx + 3 = 0
To solve this equation, we can use the identity cos^2(x) = 1 - sin^2(x):
2(1 - sin^2(x)) - 9sinx + 3 = 0
Expanding and rearranging:
2 - 2sin^2(x) - 9sinx + 3 = 0
-2sin^2(x) - 9sinx + 5 = 0
Now we have a quadratic equation in terms of sinx. To solve this, we can either factor or use the quadratic formula.
Using the quadratic formula:
sinx = (-b ± √(b^2 - 4ac)) / (2a)
a = -2, b = -9, c = 5
sinx = (9 ± √(81 - 4(-2)(5))) / (-4)
sinx = (9 ± √(81 + 40)) / (-4)
sinx = (9 ± √121) / (-4)
sinx = (9 ± 11) / (-4)
sinx = -5/2 or 1/2
Since sinx cannot be greater than 1 or less than -1, the solution is sinx = 1/2.
Using the unit circle or trigonometric identities, we can find the angles that satisfy sinx = 1/2.
The angles that satisfy sinx = 1/2 are π/6 and 5π/6.
Therefore, the solutions to this equation are:
x = π/6 + 2πn or x = 5π/6 + 2πn, where n is an integer.
4) 2cosx + 5sinx = 0
To solve this equation, we can divide both sides by cosx:
2 + 5tanx = 0
Now, move 2 to the other side:
5tanx = -2
Divide both sides by 5:
tanx = -2/5
To find the angle that satisfies this condition, we can use the inverse tangent (arctan) function:
x = arctan(-2/5)
Using a calculator or reference angles, we find:
x ≈ -0.38 radians or -21.8 degrees
Therefore, the solution to this equation is:
x ≈ -0.38 + πn, where n is an integer.
5) cos3x - cosx = 0
To solve this equation, we can use the identity cos(3x) = cos^3(x) - 3cos(x)sin^2(x):
cos^3(x) - 3cos(x)sin^2(x) - cos(x) = 0
Rearranging:
cos^3(x) - cos(x) - 3cos(x)sin^2(x) = 0
Now, factor out cos(x):
cos(x)(cos^2(x) - 1 - 3sin^2(x)) = 0
cos(x)(cos^2(x) - 1 - 3(1 - cos^2(x))) = 0
cos(x)(cos^2(x) - 1 - 3 + 3cos^2(x)) = 0
cos(x)(4cos^2(x) - 4) = 0
cos(x)(2cos(x) + 2)(2cos(x) - 2) = 0
cos(x)(2cos(x) + 2)(cos(x) - 1) = 0
Now we have three factors to consider:
cos(x) = 0, cos(x) + 1 = 0, and cos(x) - 1 = 0.
For cos(x) = 0, x can be either π/2 + πn or 3π/2 + πn, where n is an integer.
For cos(x) + 1 = 0, x = π, because cos(π) = -1.
For cos(x) - 1 = 0, x = 0, because cos(0) = 1.
Therefore, the solutions to this equation are:
x = π/2 + πn, 3π/2 + πn, π, and 0, where n is an integer.
6) sin(4x) = sin(2x)
To solve this equation, we can use the double angle identity for sine:
2sin(2x)cos(2x) = sin(2x)
Dividing both sides by sin(2x):
2cos(2x) = 1
Now, divide both sides by 2:
cos(2x) = 1/2
To find the angles that satisfy this condition, we can use the inverse cosine (arccos) function:
2x = arccos(1/2)
Using reference angles or a calculator, we find:
2x = π/3 or 5π/3
Dividing both sides by 2:
x = π/6 or 5π/6
Therefore, the solutions to this equation are:
x = π/6 + πn or 5π/6 + πn, where n is an integer.
7) 3sin(2x) - 2sin(x)cos(x) = 1
To solve this equation, we can simplify the equation first:
3sin(2x) - sin(2x) = 1
Expanding:
2sin(2x) = 1
Divide both sides by 2:
sin(2x) = 1/2
To find the angles that satisfy this condition, we can use the inverse sine (arcsin) function:
2x = arcsin(1/2)
Using reference angles or a calculator, we find:
2x = π/6 or 5π/6
Dividing both sides by 2:
x = π/12 or 5π/12
Therefore, the solutions to this equation are:
x = π/12 + πn or 5π/12 + πn, where n is an integer.
0
0


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili