
Вопрос задан 25.07.2018 в 12:27.
Предмет Алгебра.
Спрашивает Рошташ Петя.
Log(4)log(14)196+log(5)√(5)


Ответы на вопрос

Отвечает Бугаёв Игорь.
Log₄(log₁₄196)+log₅√5=log₄(log₁₄14²)+log₅5¹/²=log4(2*log₁₄14)+(1/2)*log₅5=
=log₄2+1/2=(1/2)log₂2+1/2=1/2+1/2=1.
=log₄2+1/2=(1/2)log₂2+1/2=1/2+1/2=1.



Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.
Для решения этого выражения, мы можем использовать свойства логарифмов.
Сначала применим свойство логарифма, что log(a) + log(b) = log(a*b). Используя это свойство, мы можем объединить первые два логарифма:
log(4*14) + log(196) + log(5*√(5))
Теперь можем упростить выражение:
log(56) + log(196) + log(5*√(5))
Далее, мы можем использовать свойство логарифма, что log(a) + log(b) = log(a*b) для объединения log(56) и log(196):
log(56*196) + log(5*√(5))
Теперь у нас есть:
log(10976) + log(5*√(5))
И, наконец, мы можем объединить эти два логарифма, используя тот же принцип:
log(10976*(5*√(5)))
Таким образом, итоговый ответ будет:
log(54880*√(5))


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili