
Квадратные неравенства :Решите : 1)3x^2-5x+6<02)-x^2+12x-36<03)2x^2-4x+13>0Заранее спасибо
!)

Ответы на вопрос

D=25-72=-47<0-нет решения,т.к. при любом х 3x²-5x+6Ю0
2)-x²+12x-36<0
x²-12x+36>0
(x-6)²>0
x∈(-∞;6) U (6;∞)
3)2x²-4x+13>0
D=16-104=-88<0
x∈(-∞;∞)



Quadratic Inequalities:
To solve quadratic inequalities, we need to find the values of x that satisfy the given inequality. Let's solve each of the quadratic inequalities you provided one by one:
1) 3x^2 - 5x + 6 < 0:
To solve this inequality, we can start by finding the roots of the quadratic equation 3x^2 - 5x + 6 = 0. The roots can be found using the quadratic formula:
x = (-b ± √(b^2 - 4ac)) / (2a)
For the given equation, a = 3, b = -5, and c = 6. Plugging these values into the quadratic formula, we get:
x = (-(-5) ± √((-5)^2 - 4 * 3 * 6)) / (2 * 3) x = (5 ± √(25 - 72)) / 6 x = (5 ± √(-47)) / 6
Since the discriminant (√(b^2 - 4ac)) is negative, the quadratic equation has no real roots. Therefore, the quadratic expression 3x^2 - 5x + 6 is always positive or zero.
Hence, the solution to the inequality 3x^2 - 5x + 6 < 0 is no solution.
2) -x^2 + 12x - 36 < 0:
To solve this inequality, we can start by finding the roots of the quadratic equation -x^2 + 12x - 36 = 0. The roots can be found using the quadratic formula:
x = (-b ± √(b^2 - 4ac)) / (2a)
For the given equation, a = -1, b = 12, and c = -36. Plugging these values into the quadratic formula, we get:
x = (-(12) ± √((12)^2 - 4 * (-1) * (-36))) / (2 * (-1)) x = (-12 ± √(144 - 144)) / (-2) x = (-12 ± √0) / (-2) x = (-12 ± 0) / (-2) x = -12 / (-2) x = 6
Since the discriminant (√(b^2 - 4ac)) is zero, the quadratic equation has one real root. Therefore, the quadratic expression -x^2 + 12x - 36 is always negative or zero when x = 6.
Hence, the solution to the inequality -x^2 + 12x - 36 < 0 is x < 6.
3) 2x^2 - 4x + 13 > 0:
To solve this inequality, we can start by finding the roots of the quadratic equation 2x^2 - 4x + 13 = 0. The roots can be found using the quadratic formula:
x = (-b ± √(b^2 - 4ac)) / (2a)
For the given equation, a = 2, b = -4, and c = 13. Plugging these values into the quadratic formula, we get:
x = (-(-4) ± √((-4)^2 - 4 * 2 * 13)) / (2 * 2) x = (4 ± √(16 - 104)) / 4 x = (4 ± √(-88)) / 4
Since the discriminant (√(b^2 - 4ac)) is negative, the quadratic equation has no real roots. Therefore, the quadratic expression 2x^2 - 4x + 13 is always positive or zero.
Hence, the solution to the inequality 2x^2 - 4x + 13 > 0 is all real numbers.
I hope this helps! Let me know if you have any further questions.


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili