Вопрос задан 08.10.2023 в 22:02.
Предмет Алгебра.
Спрашивает Кривощекова Анастасия.
Найдите значение sin a/2 если cos a =-12/13 , 5П/2<а<3П
Ответы на вопрос
Отвечает Кючюк Серг.
Sina/2=Корень из 1-cosa/2
Sina/2=Корень из 1+12/13=5/корень из13
Sina/2=Корень из 1+12/13=5/корень из13
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.
Для решения этой задачи, мы можем воспользоваться тригонометрической половинным угла исходя из уравнения cos(a) = -12/13. Сначала найдем sin(a/2):
Начнем с формулы для sin(a/2):
scsssin(a/2) = ± √[(1 - cos(a))/2]Подставим значение
cos(a) = -12/13:scsssin(a/2) = ± √[(1 - (-12/13))/2] = ± √[(13/13 + 12/13)/2] = ± √[(25/13)/2] = ± √(25/26)Поскольку угол
aнаходится в третьем и четвертом квадрантах (гдеcos(a)отрицателен), тоsin(a/2)также отрицателен. Таким образом:scsssin(a/2) = -√(25/26) = -5/√26
Итак, значение sin(a/2) равно -5/√26.
Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili
