
Lg^5 x - 3lg^3 x - 4 lgx = 0


Ответы на вопрос




To solve the equation lg^5(x) - 3lg^3(x) - 4lg(x) = 0, we can use a substitution to simplify it. Let's make a substitution:
Let y = lg(x).
Now, the equation becomes:
y^5 - 3y^3 - 4y = 0
This is a polynomial equation in terms of y. We can try to factor it or solve it by factoring out common terms:
y(y^4 - 3y^2 - 4) = 0
Now, we have two factors:
- y = 0
- y^4 - 3y^2 - 4 = 0
Let's solve each part separately:
y = 0 Since y = lg(x), we have: lg(x) = 0
To solve for x, we need to remove the logarithm by exponentiating both sides: x = 10^0 x = 1
Now, let's solve the quartic equation: y^4 - 3y^2 - 4 = 0
To solve this quartic equation, we can make a substitution. Let z = y^2:
z^2 - 3z - 4 = 0
Now, we have a quadratic equation in terms of z, which is easier to solve. We can factor it:
(z - 4)(z + 1) = 0
Now, solve for z:
z = 4 or z = -1
Since z = y^2, we have two possibilities:
For z = 4: y^2 = 4
Take the square root of both sides (considering both positive and negative roots): y = ±2
For z = -1: y^2 = -1
This equation has no real solutions because the square of a real number is always non-negative.
So, the solutions for y (and consequently x) are:
- y = 2
- y = -2
- x = 10^2 = 100
- x = 10^(-2) = 0.01
Therefore, the equation lg^5(x) - 3lg^3(x) - 4lg(x) = 0 has two real solutions: x = 100 and x = 0.01.


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili