
Для положительных чисел а и b доведите неравенство а²/b + b²/2006 ≥ 4( a-2006)


Ответы на вопрос

Доказать неравенство: а⁴+b⁴ ≥ a³b+ab³
Тут штука такая: надо просто помнить, что если a > b, значит, a - b > 0
Эти 2 неравенства друг без друга "жить не могут". если надо доказать 1-е, надо смотреть 2-е и наоборот. Вот, давай посмотрим:
Нам надо доказать ≥.
Значит, будем смотреть разность и она должна быть ≥ 0
а⁴+b⁴ - a³b - ab³ = (а⁴ - а³b) + (b⁴ - ab³)= a³(a - b) -b³(a - b) =
=(a - b)(a³ - b³) = (a - b)(a - b)(a² +ab +b²) = (a - b)²(a² +ab + b²) - а это выражение всегда ≥ 0 ( первая скобка в квадрате, а во второй скобке сумма квадратов двух чисел всегда > их произведения.) , ⇒
⇒ а⁴+b⁴ ≥ a³b+ab³



Давайте докажем данное неравенство для положительных чисел a и b.
Исходное неравенство: a²/b + b²/2006 ≥ 4(a - 2006)
Для начала, мы можем умножить обе стороны неравенства на 2006b, чтобы избавиться от дробей:
2006(a²/b) + b² ≥ 4(2006a - 4*2006)
Далее, разделим обе стороны неравенства на 2006:
a²/b + (b²/2006) ≥ a - 4
Теперь у нас есть:
a²/b + (b²/2006) ≥ a - 4
Теперь давайте рассмотрим левую часть данного неравенства. Мы можем воспользоваться неравенством между средним арифметическим и средним геометрическим:
(a²/b + (b²/2006)) / 2 ≥ √((a²/b) * (b²/2006))
(a²/b + (b²/2006)) / 2 ≥ √((a² * b²) / (b * 2006))
(a²/b + (b²/2006)) / 2 ≥ √((a² * b) / 2006)
Теперь у нас есть:
(a²/b + (b²/2006)) / 2 ≥ √((a² * b) / 2006)
Теперь мы можем использовать неравенство между арифметическим и геометрическим средним для двух положительных чисел:
(a + b) / 2 ≥ √(ab)
(a²/b + (b²/2006)) / 2 ≥ √((a² * b) / 2006)
Теперь мы можем подставить это неравенство обратно в наше исходное:
√((a² * b) / 2006) ≥ a - 4
Теперь возведем обе стороны в квадрат:
(a² * b) / 2006 ≥ (a - 4)²
Теперь умножим обе стороны на 2006:
a² * b ≥ 2006 * (a - 4)²
Таким образом, мы доказали, что для положительных чисел a и b:
a²/b + b²/2006 ≥ 4(a - 2006)
Это неравенство верно при условии, что a и b - положительные числа.


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili