
Вопрос задан 07.10.2023 в 15:36.
Предмет Алгебра.
Спрашивает Нуждина Настя.
В прямоугольном треугольнике ABC, AB равно 15 см один из катетов равен 9 .Найдите тангенс угла САВ-
меньшего из острых углов.

Ответы на вопрос

Отвечает Киселёв Павел.
Второй катет = √{15²-9²} = √144 = 12
Тангенс угла САВ = 9/12 = 3/4



Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.
Для нахождения тангенса меньшего из острых углов треугольника САВ, мы можем воспользоваться следующим соотношением:
тангенс(угла САВ) = противолежащий катет / прилежащий катет.
В данном случае, у нас есть катеты AB и BC, и угол САВ противолежит катету AB, а прилежащий катет - это катет BC.
AB = 15 см BC = 9 см
Теперь мы можем вычислить тангенс угла САВ:
тангенс(угла САВ) = AB / BC = 15 см / 9 см ≈ 1.6667
Тангенс угла САВ приближенно равен 1.6667.


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili