Вопрос задан 05.10.2023 в 22:14. Предмет Алгебра. Спрашивает Пушкарёв Константин.

X^4-10x^3+250x-625=0

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Полозков Ваня.

x⁴ - 10x³ + 250x - 625 = 0

x⁴ - 625 + 10x³ + 250x = 0

(x² - 25)(x² + 25) + 10x(x² - 25) = 0

(x² - 25)(x² + 10x + 25) = 0

(x+5)(x-5)(x-5) = 0

x1 = -5

x2 = 5

Ответ: -5; 5.

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

The equation you've given is a quartic equation, which means it's a polynomial equation of degree 4. To solve this equation, you can use various methods, such as factoring, the Rational Root Theorem, or numerical methods.

In this case, I'll demonstrate how to solve it using the Rational Root Theorem and synthetic division. The Rational Root Theorem states that if a rational number p/q is a root of the polynomial equation, where p and q are coprime integers, then p must be a factor of the constant term (in this case, 625), and q must be a factor of the leading coefficient (in this case, 1).

The factors of 625 are ±1, ±5, ±25, ±125, and ±625, and the factors of 1 are ±1.

Let's test these potential rational roots using synthetic division:

  1. Test x = 1: Synthetic Division:

    1 | 1 -10 250 -625 | 1 -9 241

    The remainder is 241, so x = 1 is not a root.

  2. Test x = -1: Synthetic Division:

    diff
    -1 | 1 -10 250 -625 | -1 11 -261

    The remainder is -261, so x = -1 is not a root.

  3. Test x = 5: Synthetic Division:

    5 | 1 -10 250 -625 | 5 -25 125

    The remainder is 125, so x = 5 is not a root.

  4. Test x = -5: Synthetic Division:

    diff
    -5 | 1 -10 250 -625 | -5 75 -625

    The remainder is -625, so x = -5 is not a root.

  5. Test x = 25: Synthetic Division:

    markdown
    25 | 1 -10 250 -625 | 25 375 15625

    The remainder is 15625, so x = 25 is not a root.

  6. Test x = -25: Synthetic Division:

    diff
    -25 | 1 -10 250 -625 | -25 625 -16875

    The remainder is -16875, so x = -25 is not a root.

  7. Test x = 125: Synthetic Division:

    markdown
    125 | 1 -10 250 -625 | 125 18750 2187500

    The remainder is 2187500, so x = 125 is not a root.

  8. Test x = -125: Synthetic Division:

    diff
    -125 | 1 -10 250 -625 | -125 15625 -1953125

    The remainder is -1953125, so x = -125 is not a root.

None of the potential rational roots tested resulted in a remainder of 0, which means this quartic equation does not have any rational roots. Therefore, to find the solutions, you would need to use numerical methods or a calculator. These methods would approximate the solutions, which would likely involve using numerical techniques like Newton's method or a graphing calculator to find the roots.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос