
X^4-10x^3+250x-625=0


Ответы на вопрос

x⁴ - 10x³ + 250x - 625 = 0
x⁴ - 625 + 10x³ + 250x = 0
(x² - 25)(x² + 25) + 10x(x² - 25) = 0
(x² - 25)(x² + 10x + 25) = 0
(x+5)(x-5)(x-5) = 0
x1 = -5
x2 = 5
Ответ: -5; 5.



The equation you've given is a quartic equation, which means it's a polynomial equation of degree 4. To solve this equation, you can use various methods, such as factoring, the Rational Root Theorem, or numerical methods.
In this case, I'll demonstrate how to solve it using the Rational Root Theorem and synthetic division. The Rational Root Theorem states that if a rational number p/q is a root of the polynomial equation, where p and q are coprime integers, then p must be a factor of the constant term (in this case, 625), and q must be a factor of the leading coefficient (in this case, 1).
The factors of 625 are ±1, ±5, ±25, ±125, and ±625, and the factors of 1 are ±1.
Let's test these potential rational roots using synthetic division:
Test x = 1: Synthetic Division:
1 | 1 -10 250 -625 | 1 -9 241
The remainder is 241, so x = 1 is not a root.
Test x = -1: Synthetic Division:
diff-1 | 1 -10 250 -625 | -1 11 -261
The remainder is -261, so x = -1 is not a root.
Test x = 5: Synthetic Division:
5 | 1 -10 250 -625 | 5 -25 125
The remainder is 125, so x = 5 is not a root.
Test x = -5: Synthetic Division:
diff-5 | 1 -10 250 -625 | -5 75 -625
The remainder is -625, so x = -5 is not a root.
Test x = 25: Synthetic Division:
markdown25 | 1 -10 250 -625 | 25 375 15625
The remainder is 15625, so x = 25 is not a root.
Test x = -25: Synthetic Division:
diff-25 | 1 -10 250 -625 | -25 625 -16875
The remainder is -16875, so x = -25 is not a root.
Test x = 125: Synthetic Division:
markdown125 | 1 -10 250 -625 | 125 18750 2187500
The remainder is 2187500, so x = 125 is not a root.
Test x = -125: Synthetic Division:
diff-125 | 1 -10 250 -625 | -125 15625 -1953125
The remainder is -1953125, so x = -125 is not a root.
None of the potential rational roots tested resulted in a remainder of 0, which means this quartic equation does not have any rational roots. Therefore, to find the solutions, you would need to use numerical methods or a calculator. These methods would approximate the solutions, which would likely involve using numerical techniques like Newton's method or a graphing calculator to find the roots.


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili