
Sin^2 x + 4cos x=2,75


Ответы на вопрос

Ответ:



To solve the equation sin^2(x) + 4cos(x) = 2.75, you can use trigonometric identities to simplify it.
First, recall the identity: sin^2(x) + cos^2(x) = 1.
Now, we need to rewrite the equation in terms of either sin(x) or cos(x) so that we can apply this identity. Let's rewrite cos(x) in terms of sin(x) using the identity: cos^2(x) = 1 - sin^2(x).
So, we have:
sin^2(x) + 4(1 - sin^2(x)) = 2.75
Now, distribute the 4 on the left side of the equation:
sin^2(x) + 4 - 4sin^2(x) = 2.75
Combine like terms:
-3sin^2(x) + 4 = 2.75
Subtract 4 from both sides:
-3sin^2(x) = 2.75 - 4
-3sin^2(x) = -1.25
Now, divide by -3:
sin^2(x) = (-1.25) / (-3)
sin^2(x) = 1.25 / 3
sin^2(x) = 5/12
To solve for sin(x), take the square root of both sides:
sin(x) = ±√(5/12)
Now, we need to determine the sign. Since sin(x) is positive in the first and second quadrants, you have:
sin(x) = √(5/12) or sin(x) = -√(5/12)
Now, to find the values of x, you can take the arcsin (inverse sine) of these values:
For sin(x) = √(5/12): x = arcsin(√(5/12))
For sin(x) = -√(5/12): x = arcsin(-√(5/12))
These values of x will give you the solutions to the equation sin^2(x) + 4cos(x) = 2.75. Remember to check for any restrictions on the domain of x, typically between -π and π or 0 and 2π depending on the context of the problem.


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili