
ОЧЕНЬ ЛЕГКО Найди значение алгебраического выражения 3x−ay+bz, если a=3c,b=14c3 и
x=5c3+2,y=6c2−c+13,z=5c−1.

Ответы на вопрос

Ответ:
2x - ay + bz
a = 3c
b = 14c^3
x = 5c^3 + 2
y = 6c^2 - c + 13
z = 5c - 1
2(5c^3 + 2) - 3c*(6c^2 - c + 13) + 14c^3*(5c - 1) =
= 10c^3 + 4 - 3c*6c^2 + 3c*c - 39c + 70c^4 - 14c^3 =
= 10c^3 + 4 - 18c^3 + 3c^2 - 39c + 70c^4 - 14c^3 =
= 70c^4 - 22c^3 + 3c^2 - 39c + 4



Для нахождения значения алгебраического выражения 3x - ay + bz при данных значениях a, b, x, y и z, вы можете подставить эти значения в выражение:
3x - ay + bz = 3(5c^3 + 2) - 3c(6c^2 - c + 13) + 14c^3(5c - 1)
Сначала вычислим каждое слагаемое по отдельности:
3(5c^3 + 2) = 15c^3 + 6
-3c(6c^2 - c + 13) = -18c^3 + 3c^2 - 39c
14c^3(5c - 1) = 70c^4 - 14c^3
Теперь сложим все слагаемые:
(15c^3 + 6) - (18c^3 - 3c^2 + 39c) + (70c^4 - 14c^3)
Теперь выполним операции сложения и вычитания:
15c^3 + 6 - 18c^3 + 3c^2 - 39c + 70c^4 - 14c^3
Сгруппируем по степеням c:
(70c^4) + (15c^3 - 14c^3 - 18c^3) + 3c^2 - 39c + 6
Упростим слагаемые:
70c^4 - 17c^3 + 3c^2 - 39c + 6
Таким образом, значение алгебраического выражения 3x - ay + bz при заданных значениях a, b, x, y и z равно:
70c^4 - 17c^3 + 3c^2 - 39c + 6.


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili