Вопрос задан 22.07.2018 в 17:34. Предмет Алгебра. Спрашивает Молчан Егор.

Найти промежутки вощрастания и убивания их функции

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Іліх Максим.

Скажите пожалуйста, а где именно график по которому нужно найти промежутки возрастания и убывания?

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Промежутки возрастания и убывания функции определяются по её производной. Если производная функции положительна на некотором интервале, то функция возрастает на этом интервале. Если производная функции отрицательна на некотором интервале, то функция убывает на этом интервале.

Для того чтобы найти промежутки возрастания и убывания функции, нужно найти её производную, затем решить уравнение производной равной нулю, чтобы найти критические точки, и затем провести исследование знаков производной на каждом интервале между критическими точками.

Пример: Пусть дана функция f(x) = x^2 - 2x - 3. Найдем её производную: f'(x) = 2x - 2. Решим уравнение f'(x) = 0: 2x - 2 = 0 => x = 1. Это критическая точка функции. Теперь проведем исследование знаков производной: - при x < 1, f'(x) < 0, значит функция убывает на этом промежутке; - при x > 1, f'(x) > 0, значит функция возрастает на этом промежутке.

Таким образом, функция f(x) = x^2 - 2x - 3 убывает на интервале (-∞, 1) и возрастает на интервале (1, +∞).

0 0

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос