
5(3x - 2)+2=-2(4y+1),3(y-x)+ 8 = 3x -(5x - y).


Ответы на вопрос

Ответ:
5(3x - 2)+2=-2(4y+1),
3(y-x)+ 8 = 3x -(5x - y)
15x-10+2=-8y-2
3y-3x+8=3x-5x+y
15x+8y=-2+10-2
3y-3x-3x+5x-y=-8
15x+8y=6
2y-x=-8
15x+8y=6
-x=-8-2y
-15x-8y=-6
x=8+2y
-15(8+2y)-8y=-6
-120-30y-8y=-6
-30y-8y=-6+120
-38y=114
y=114÷-38
y=-3
x=8+2×-3
x=2
ответ:
(x;y)=(2;-3)



To solve this system of linear equations:
- 5(3x - 2) + 2 = -2(4y + 1)
- 3(y - x) + 8 = 3x - (5x - y)
Let's start by simplifying each equation:
Equation 1: 5(3x - 2) + 2 = -2(4y + 1)
Distribute on both sides:
15x - 10 + 2 = -8y - 2
Combine like terms:
15x - 8 = -8y - 2
Equation 2: 3(y - x) + 8 = 3x - (5x - y)
Distribute on both sides:
3y - 3x + 8 = 3x - 5x + y
Combine like terms:
3y - 3x + 8 = -2x + y
Now, we have a system of two equations:
- 15x - 8 = -8y - 2
- 3y - 3x + 8 = -2x + y
We can solve this system of equations by either substitution or elimination. Let's use the elimination method.
First, let's make the coefficients of y in both equations equal by multiplying the second equation by 8 (so that both coefficients of y become -8):
- 15x - 8 = -8y - 2
- 24y - 24x + 64 = -16x + 8y
Now, we have:
- 15x - 8 = -8y - 2
- 24y - 24x + 64 = -16x + 8y
Now, we can add both equations to eliminate the variable y:
(15x - 8) + (24y - 24x + 64) = (-8y - 2) + (-16x + 8y)
Simplify and combine like terms:
15x - 8 + 24y - 24x + 64 = -8y - 2 - 16x + 8y
Now, let's collect like terms:
(-8x + 24y + 56) = (-8x + 6y - 2)
Now, let's isolate the variables on one side and constants on the other side:
-8x + 8x + 24y - 6y = -2 - 56
18y - 6y = -58
12y = -58
Now, divide both sides by 12 to solve for y:
y = (-58) / 12 y = -29/6
Now that we have found the value of y, we can substitute it back into one of the original equations to find the value of x. Let's use Equation 1:
15x - 8 = -8(-29/6) - 2
15x - 8 = 116/3 - 2
15x - 8 = (116/3) - (6/3)
15x - 8 = (116 - 6) / 3
15x - 8 = 110/3
Now, isolate x:
15x = 110/3 + 8
15x = (110 + 24) / 3
15x = 134/3
Now, divide both sides by 15 to solve for x:
x = (134/3) / 15
x = (134/3) * (1/15)
x = 134/45
So, the solution to the system of equations is:
x = 134/45 y = -29/6


Похожие вопросы

Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili