X^ 2 -y<=2,\\ y^ 2 -x<=2.
Ответы на вопрос
Ответ:правильно или нет незнаю
Объяснение:
Вот 2 там много так что просто напиши сразу ответ


The given inequalities are:
- x^2 - y ≤ 2
- y^2 - x ≤ 2
To find the solution to this system of inequalities, we can graph the equations and shade the regions that satisfy both inequalities.
Let's start with the first inequality, x^2 - y ≤ 2. If we rearrange it to isolate y:
y ≥ x^2 - 2
Now, let's graph this inequality:
- Draw the curve y = x^2 - 2. This is a parabola that opens upward.
Next, let's consider the second inequality, y^2 - x ≤ 2. If we rearrange it to isolate y:
y ≤ ±√(x + 2)
Since we have a square root, we need to consider both the positive and negative square roots:
- Draw the curves y = √(x + 2) and y = -√(x + 2). These are two parabolas opening upward and downward, respectively.
Now, let's find the regions that satisfy both inequalities. We want the overlapping regions between these graphs.
From the first inequality (y ≥ x^2 - 2), we are looking for the area above the curve y = x^2 - 2.
From the second inequalities (y ≤ √(x + 2) and y ≤ -√(x + 2)), we are looking for the area below both of these curves.
The solution to the system of inequalities is the region where all these conditions are satisfied. It will be the overlapping region above the curve y = x^2 - 2 and below both curves y = √(x + 2) and y = -√(x + 2).
The final solution region will be the intersection of these areas. It may be a complex shape, and it's best to use graphing software or a graphing calculator to visualize it accurately.
Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili
