
!!!СРОЧНО!!!!Довести, що вираз a²-10a+27 набуває додаткових значень, при всіх значеннях a


Ответы на вопрос

выделим полный квадрат разности
a²-10a+27 = a²-2*5a+5²-25+27=(а-5)²+2>0 как сумма неотрицательного числа (а-5)² и положительного числа 2



Для доведення того, що вираз a² - 10a + 27 набуває додаткових значень при всіх значеннях a, ми спробуємо знайти мінімальне значення цього виразу і покажемо, що це значення не єдине.
Розглянемо вираз a² - 10a + 27.
Давайте спробуємо знайти мінімальне значення шляхом пошуку критичних точок. Для цього візьмемо похідну від цього виразу за a і прирівняємо її до нуля:
2a - 10 = 0
Розв'яжемо це рівняння для a:
2a = 10 a = 5
Таким чином, мінімальне значення виразу досягається при a = 5.
Подставимо a = 5 в вираз a² - 10a + 27:
5² - 10 * 5 + 27 = 25 - 50 + 27 = 2
Таким чином, мінімальне значення виразу дорівнює 2.
Тепер можемо показати, що вираз набуває інших значень. Наприклад, при a = 0:
0² - 10 * 0 + 27 = 0 - 0 + 27 = 27
Отже, ми показали, що вираз a² - 10a + 27 набуває додаткових значень: мінімального значення 2 і більшого значення 27, і це стосується всіх можливих значень a.


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili