
Спростити вираз за допомогою формул додавання (cos(a+15)-cosa*cos15)/(sina*cos15)


Ответы на вопрос

Ответ:
-tg 15
Объяснение:
см приложение




Для спрощення цього виразу використаємо тригонометричні формули додавання. Спершу розглянемо формулу додавання для косинуса:
cos(a + b) = cos(a)cos(b) - sin(a)sin(b)
У вас є вираз cos(a + 15), тому замінимо b на 15 у формулі:
cos(a + 15) = cos(a)cos(15) - sin(a)sin(15)
Тепер ми можемо підставити це у ваш вираз:
(cos(a + 15) - cos(a)cos(15)) / (sin(a)cos(15))
Зараз ми можемо застосувати формулу додавання для синуса:
sin(a + b) = sin(a)cos(b) + cos(a)sin(b)
Для вас b = 15, тому:
sin(a + 15) = sin(a)cos(15) + cos(a)sin(15)
Знову підставимо це у вираз:
(cos(a + 15) - cos(a)cos(15)) / (sin(a)cos(15)) = (sin(a)cos(15) + cos(a)sin(15) - cos(a)cos(15)) / (sin(a)cos(15))
Тепер ми можемо спростити цей вираз, віднімаючи cos(a)cos(15) з чисельника:
(sin(a)cos(15) + cos(a)sin(15) - cos(a)cos(15) - sin(a)cos(15)) / (sin(a)cos(15))
Залишилось відняти cos(a)cos(15) та sin(a)cos(15) із чисельника:
(sin(a)sin(15) - cos(a)cos(15)) / (sin(a)cos(15))
Отже, спрощений вираз буде:
(sin(a)sin(15) - cos(a)cos(15)) / (sin(a)cos(15))


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili