Вопрос задан 25.09.2023 в 06:13. Предмет Алгебра. Спрашивает Охрименко Лиза.

Розв'яжіть задачу за допомогою системи рівнянь. 1) Периметр прямокутного трикутника дорівнює 36

см, а довжина медіани, проведеної до гіпотенузи, становить 7,5 см. Знайдіть ка тети цього трикутника.2) Периметр прямокутника дорівнює 14 см, а квадрат його діагона лі 25 см2. Знайдіть сторони прямокутника.С поясненням ​, Срочно пожалуйста!!!!!!
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Вавакин Игорь.

1.Позначимо катети прямокутного трикутника як a та b, а гіпотенузу як c. За теоремою Піфагора, маємо:

c^2 = a^2 + b^2

Медіана, проведена до гіпотенузи, ділить її на дві рівні частини, тобто:

c/2 = 7.5

Звідси маємо:

c = 15

Підставляємо це значення в рівняння Піфагора та виражаємо один з катетів:

b^2 = c^2 - a^2

b^2 = 225 - a^2

Також, з умови задачі, відомо, що периметр трикутника дорівнює 36, тобто:

a + b + c = 36

Підставляємо в це рівняння вираз для c та b:

a + √(225 - a^2) + 15 = 36

Розв'язуємо це рівняння для a:

a + √(225 - a^2) = 21

(а + √(225 - a^2))^2 = 21^2

a^2 + 225 - a^2 + 2a√(225 - a^2) = 441

2a√(225 - a^2) = 216

√(225 - a^2) = 108 / a

225 - a^2 = 11664 / a^2

225a^2 - a^4 = 11664

a^4 - 225a^2 + 11664 = 0

Зробимо заміну змінної: b = a^2

b^2 - 225b + 11664 = 0

(b - 144)(b - 81) = 0

Таким чином, маємо два корені: b = 144 та b = 81. Підставляємо кожне з цих значень в вираз для b^2, щоб знайти відповідні значення a:

b = 144: a = √(225 - 144) = 9

b = 81: a = √(225 - 81) = 12

Таким чином, ми знайшли два можливих трикутники, з катетами 9 та 12, або 12 та 9.

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Задача 1:

Давайте позначимо сторони прямокутного трикутника так: a, b і c, де c - гіпотенуза. Також, нехай d - це медіана, проведена до гіпотенузи.

За теоремою Піфагора ми можемо записати:

c^2 = a^2 + b^2

Медіана, проведена до гіпотенузи, розбиває прямокутний трикутник на два подібні трикутники. Таким чином, ми можемо використовувати подібність для знаходження довжини медіани. Виразимо d відносно a та b:

d = 2 * (a / 2) * (b / 2) / sqrt((a/2)^2 + (b/2)^2)

d = (ab) / (2 * sqrt((a/2)^2 + (b/2)^2))

Тепер ми знаємо два факти:

  1. Периметр прямокутного трикутника дорівнює 36 см: a + b + c = 36
  2. Довжина медіани, проведеної до гіпотенузи, становить 7,5 см: d = 7.5

Тепер у нас є система двох рівнянь з двома невідомими (a, b):

  1. a + b + c = 36
  2. d = 7.5

Ми також маємо вираз для d відносно a і b:

d = (ab) / (2 * sqrt((a/2)^2 + (b/2)^2))

Тепер можемо підставити d і виразити c:

7.5 = (ab) / (2 * sqrt((a/2)^2 + (b/2)^2))

Після спрощення:

15 = ab / sqrt((a^2 + b^2) / 4)

Розділимо обидві сторони на 15:

ab / sqrt((a^2 + b^2) / 4) = 1

Піднесемо обидві сторони до квадрата:

(a^2 * b^2) / ((a^2 + b^2) / 4) = 1

Перетворимо дріб в правій частині рівняння:

(a^2 * b^2) * (4 / (a^2 + b^2)) = 1

Помножимо обидві сторони на (a^2 + b^2):

4 * a^2 * b^2 = a^2 + b^2

3 * a^2 * b^2 = a^2 + b^2

3 * a^2 * b^2 - a^2 - b^2 = 0

Тепер ми маємо квадратне рівняння відносно a^2 і b^2:

3 * a^2 * b^2 - a^2 - b^2 = 0

З цього рівняння ми можемо знайти значення a^2 і b^2, а потім взяти їхні квадратні корені, щоб знайти a і b. Після знаходження a і b ми можемо знайти c, використовуючи перше рівняння (a + b + c = 36).

Задача 2:

Позначимо сторони прямокутника через a і b, де a - довжина, а b - ширина.

Ми знаємо, що периметр прямокутника дорівнює 14 см:

2a + 2b = 14

Діагональ прямокутника може бути знайдена за допомогою теореми Піфагора:

діагональ^2 = a^2 + b^2

Ми також знаємо, що площа прямокутника дорівнює 25 см^2:

a * b = 25

У нас є система трьох рівнянь з двома невідомими (a і b):

  1. 2a + 2b = 14
  2. a * b = 25
  3. a^2 + b^2 = діагональ^2

Ми можемо використовувати цю систему для знаходження значень a і b. Розв'язати її можна методом підстановки або елімінації.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос