 
1) ax+8y=12 18x-3y=-1
 0
        0
         0
        0
    Ответы на вопрос
 
        Ответ:
30
Объяснение:
 0
                    0
                     0
                    0
                 
            To solve this system of linear equations:
- ax + 8y = 12
- 18x - 3y = -1
You can use either the substitution method or the elimination method. I'll demonstrate the elimination method here:
First, you can multiply both sides of equation (1) by 3 to make the coefficients of y in both equations cancel each other out when added together:
- 3(ax + 8y) = 3(12)
- 18x - 3y = -1
Now, simplify equation (1):
3ax + 24y = 36
Now, you have the system:
- 3ax + 24y = 36
- 18x - 3y = -1
Next, you can multiply equation (2) by 8 to make the coefficients of y in both equations cancel each other out when added together:
- 3ax + 24y = 36
- 8(18x - 3y) = 8(-1)
Now, simplify equation (2):
144x - 24y = -8
Now, you have the system:
- 3ax + 24y = 36
- 144x - 24y = -8
Now, add equation (1) and equation (2) together to eliminate y:
(3ax + 24y) + (144x - 24y) = 36 - 8
Now, simplify the equation:
3ax + 144x = 28
Now, you have a single equation in one variable (x). To solve for x, you can isolate it:
3ax + 144x = 28
Factor out the common factor of x:
x(3a + 144) = 28
Now, divide both sides by (3a + 144) to solve for x:
x = 28 / (3a + 144)
So, the solution for x in terms of the parameter 'a' is:
x = 28 / (3a + 144)
To find the solution for y, you can substitute this value of x into either equation (1) or (2). Let's use equation (1):
3ax + 24y = 36
Substitute x = 28 / (3a + 144):
3a(28 / (3a + 144)) + 24y = 36
Now, simplify the equation and solve for y:
(84a / (3a + 144)) + 24y = 36
Multiply both sides by (3a + 144) to eliminate the fraction:
84a + 24y(3a + 144) = 36(3a + 144)
Now, simplify and solve for y:
84a + 72ay + 3456y = 108a + 5184
Rearrange terms:
72ay + 84a - 108a = 5184 - 3456y
Combine like terms:
72ay - 24a = 1728 - 3456y
Factor out a common factor of 24a:
24a(3y - 1) = 1728 - 3456y
Now, divide both sides by 24a to solve for y:
3y - 1 = (1728 - 3456y) / (24a)
3y = (1728 - 3456y) / (24a) + 1
Now, isolate y:
y = [(1728 - 3456y) / (24a) + 1] / 3
So, the solution for y in terms of the parameter 'a' is:
y = [(1728 - 3456y) / (24a) + 1] / 3
 0
                    0
                     0
                    0
                Похожие вопросы
 
			Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
- 
			Математика 
- 
			Литература 
- 
			Алгебра 
- 
			Русский язык 
- 
			Геометрия 
- 
			Английский язык 
- 
			Химия 
- 
			Физика 
- 
			Биология 
- 
			Другие предметы 
- 
			История 
- 
			Обществознание 
- 
			Окружающий мир 
- 
			География 
- 
			Українська мова 
- 
			Информатика 
- 
			Українська література 
- 
			Қазақ тiлi 
- 
			Экономика 
- 
			Музыка 
- 
			Право 
- 
			Беларуская мова 
- 
			Французский язык 
- 
			Немецкий язык 
- 
			МХК 
- 
			ОБЖ 
- 
			Психология 
- 
			Физкультура и спорт 
- 
			Астрономия 
- 
			Кыргыз тили 
- 
			Оʻzbek tili 
 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			