
1) ax+8y=12 18x-3y=-1


Ответы на вопрос

Ответ:
30
Объяснение:



To solve this system of linear equations:
- ax + 8y = 12
- 18x - 3y = -1
You can use either the substitution method or the elimination method. I'll demonstrate the elimination method here:
First, you can multiply both sides of equation (1) by 3 to make the coefficients of y in both equations cancel each other out when added together:
- 3(ax + 8y) = 3(12)
- 18x - 3y = -1
Now, simplify equation (1):
3ax + 24y = 36
Now, you have the system:
- 3ax + 24y = 36
- 18x - 3y = -1
Next, you can multiply equation (2) by 8 to make the coefficients of y in both equations cancel each other out when added together:
- 3ax + 24y = 36
- 8(18x - 3y) = 8(-1)
Now, simplify equation (2):
144x - 24y = -8
Now, you have the system:
- 3ax + 24y = 36
- 144x - 24y = -8
Now, add equation (1) and equation (2) together to eliminate y:
(3ax + 24y) + (144x - 24y) = 36 - 8
Now, simplify the equation:
3ax + 144x = 28
Now, you have a single equation in one variable (x). To solve for x, you can isolate it:
3ax + 144x = 28
Factor out the common factor of x:
x(3a + 144) = 28
Now, divide both sides by (3a + 144) to solve for x:
x = 28 / (3a + 144)
So, the solution for x in terms of the parameter 'a' is:
x = 28 / (3a + 144)
To find the solution for y, you can substitute this value of x into either equation (1) or (2). Let's use equation (1):
3ax + 24y = 36
Substitute x = 28 / (3a + 144):
3a(28 / (3a + 144)) + 24y = 36
Now, simplify the equation and solve for y:
(84a / (3a + 144)) + 24y = 36
Multiply both sides by (3a + 144) to eliminate the fraction:
84a + 24y(3a + 144) = 36(3a + 144)
Now, simplify and solve for y:
84a + 72ay + 3456y = 108a + 5184
Rearrange terms:
72ay + 84a - 108a = 5184 - 3456y
Combine like terms:
72ay - 24a = 1728 - 3456y
Factor out a common factor of 24a:
24a(3y - 1) = 1728 - 3456y
Now, divide both sides by 24a to solve for y:
3y - 1 = (1728 - 3456y) / (24a)
3y = (1728 - 3456y) / (24a) + 1
Now, isolate y:
y = [(1728 - 3456y) / (24a) + 1] / 3
So, the solution for y in terms of the parameter 'a' is:
y = [(1728 - 3456y) / (24a) + 1] / 3


Похожие вопросы

Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili