Вопрос задан 24.09.2023 в 05:21. Предмет Алгебра. Спрашивает Доскина Диана.

Розв'яжи рівняння методом заміни змінної х⁴ + 8х² - 48 = 0!

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Аркадьева Алиса.

Ответ:

x=±√12

Объяснение:

x²=t : t≥0

t²+8t-48=0

a=1 b=8 c=-48

t1+t2=-8

t1·t2=-48

t1=12

t2=-4

x²=12

x=±√12

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Щоб розв'язати рівняння x4+8x248=0x^4 + 8x^2 - 48 = 0, проведемо заміну y=x2y = x^2. Тоді рівняння набуде вигляду:

y2+8y48=0y^2 + 8y - 48 = 0.

Тепер розв'яжемо це квадратне рівняння за допомогою квадратного кореня:

y=b±b24ac2ay = \frac{{-b \pm \sqrt{{b^2 - 4ac}}}}{{2a}},

де a=1a = 1, b=8b = 8 і c=48c = -48.

y=8±824(1)(48)2(1)y = \frac{{-8 \pm \sqrt{{8^2 - 4(1)(-48)}}}}{{2(1)}},

y=8±64+1922y = \frac{{-8 \pm \sqrt{{64 + 192}}}}{2},

y=8±2562y = \frac{{-8 \pm \sqrt{{256}}}}{2},

y=8±162y = \frac{{-8 \pm 16}}{2}.

Таким чином, маємо два значення yy:

  1. y1=8+162=4y_1 = \frac{{-8 + 16}}{2} = 4
  2. y2=8162=12y_2 = \frac{{-8 - 16}}{2} = -12

Пам'ятайте, що y=x2y = x^2, тому:

  1. x12=4x_1^2 = 4 дозволяє нам знайти дві можливі значення xx: x1=2x_1 = 2 і x2=2x_2 = -2.
  2. x22=12x_2^2 = -12 не має реальних коренів, оскільки квадрат будь-якого дійсного числа завжди дорівнює невід'ємному числу.

Отже, рішення рівняння x4+8x248=0x^4 + 8x^2 - 48 = 0 є x=2x = 2 і x=2x = -2.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос