Вопрос задан 09.09.2023 в 18:09. Предмет Алгебра. Спрашивает Бакыткызы Айжан.

Положительные числа a, b, с таковы, что abc =1. Докажите неравенство

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Алисиёнок Полина.
 
abc=1\\
\frac{1}{a^3(b+c)} + \frac{1}{b^3(a+c)} + \frac{1}{c^3(b+a)} \geq \frac{3}{2}\\\\
  
После приведения под общим  знаменатель,получим                     
\frac{(ab+ac+bc)(a^3b^3+a^3c^3+a^2b^2c^2+b^3c^3)}{a^3b^3c^3(a+b)(a+c)(b+c)} = \\\\
abc=1\\\\
\frac{(ab+ac+bc)(a^3b^3+a^3c^3+b^3c^3+1)}{ (a+b)(a+c)(b+c)}

  
 Теперь по неравенству о средних получим 
  \frac{a^3b^3+a^3c^3+b^3c^3}{3} \geq \sqrt[3]{a^6b^6c^6}=a^2b^2c^2=1
 то есть  a^3b^3+a^3c^3+c^3b^3 \geq 3 с учетом того что   a>0;b>0;c>0 
Так же             (a+b)(b+c)(a+c)=a^2b+a^2c+ab^2+ac^2+b^2c+bc^2+2\\
\frac{a^2b+a^2c+ab^2+ac^2+b^2c+bc^2}{6} \geq 1\\
a^2b+a^2c+ab^2+ac^2+b^2c+bc^2 \geq 6 
И включая  \frac{(ab+bc+ac)*4}{8} \geq \frac{3}{2}\\
\frac{ab+bc+ac}{2} \geq \frac{3}{2} 
 прихожим к более легкому неравенству 
  ab+bc+ac \geq 3\\
\frac{ab+bc+ac}{3} \geq 1 \\
      \frac{ab+bc+ac}{3} \geq     \sqrt[3]{a^2b^2c^2}=1
 
 то есть минимальное значение это  \frac{3}{2}
 Что и требовалось  доказать


0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Чтобы доказать неравенство, нам нужно определить само неравенство. Пожалуйста, предоставьте неравенство, которое вы хотите, чтобы я доказал, и я постараюсь помочь вам с его доказательством.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос