Вопрос задан 07.09.2023 в 12:36. Предмет Алгебра. Спрашивает Сорбало Анастасия.

Решить логарифмическое неравенство: Ответ мне известен ( ); нужно именно решение.

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Черемных Даниил.
**************************

0 0
Отвечает Тихонова Даша.
ОДЗ
1)x²+4x+4>0⇒(x+2)²>0⇒x<-2 U x>-2
2)x²+4x+4≠1⇒x²+4x+3≠0
x1+x2=-4 U x1*x2=3
x≠-3 U x≠-1
3)x(x+1)(x+3)(x+4)>0
x=0  x=-1  x=-3  x=-4
       +            _            +              _                +
-----------------------------------------------------------------
           -4              -3              -1          0
x<-4 U -3<x<-1 U x>0
x∈(-∞;-4) U (-3;-2) U (-2;-1) U (0;∞)
a)x²+4x+4>1 при x∈(-∞;-4) U (0;∞)
log(x²+4x+4)(x(x+1)(x+3)(x+4))>1
x(x+1)(x+3)(x+4)>x²+4x+4
(x²+4x)(x²+4x+3)-(x²+4x+4)>0
x²+4x+3=a
(a-3)a-(a+1)>0
a²-3a-a-1>0
a²-4a-1>0
D=16+4=20              √D=2√5
a1=(4-2√5)/2=2-√5
a2=2+√5
a<2-√5 U a>2+√5
x²+4x+3<2-√5 U x²+4x+3>2+√5
1)x²+4x+(1+√5)<0
D=16-4-4√5=12-4√5
x1=(-4-2√(3-√5))/2=-2-√(3-√5) U x2=-2+√(3-√5)
(-2-√(3-√5)) <x<(-2+√(3-√5))
x∈(-∞;-4)/2) U (0;∞)
2)x²+4x+(1-√5)>0
D=16-4+4√5=12+4√5
x1=(-4-2√(3+√5))/2=-2-√(3+√5) U x2=-2+√(3+√5)
x<-2-√(3+√5) U x>-2+√(3+√5)
x∈(-∞;-2-√(3+√5)) U ((-2+√(3+√5);∞)
Общий x∈(-∞;-2-√(3+√5)) U ((-2+√(3+√5);∞)
б)x²+4x+4<1 при x∈(-3;-2) U (-2;-1)
log(x²+4x+4)(x(x+1)(x+3)(x+4))<1
a²-4a-1<0
2-√5<a<2+√5
x²+4x+3>2-√5 U x²+4x+3<2+√5
x<-2-√(3-√5) U x>-2+√(3-√5)
x∈(-3;-2-√(3-√5))U (-2+√(3-√5);-1)
Ответ x∈(-∞;-4)/2) U -3;-2-√(3-√5))U (-2+√(3-√5);-1) U (0;∞)















0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для решения логарифмического неравенства необходимо следовать определенным шагам. Пожалуйста, предоставьте конкретное логарифмическое неравенство, которое вы хотите решить, чтобы я мог предоставить вам подробное решение. Логарифмические неравенства могут иметь разные виды, и каждое требует своего метода решения.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос