Вопрос задан 07.09.2023 в 05:29. Предмет Алгебра. Спрашивает Атрощенко Артём.

Помогите решить ариф. прогрессию Выписаны первые несколько членов арифметической прогрессии: −6 ;

−2 ; 2 . Найдите её шестнадцатый член.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Чернов Никита.
D(Разность ариф. прогрессии)=a2-a1                      a1=-6, a2=-2 
d=-2+6=4
a16=a1+15d=-6+15*4=54
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для решения этой задачи нам нужно найти разность арифметической прогрессии (d), используя первые три члена, а затем найти шестнадцатый член прогрессии.

  1. Найдем разность (d): d = второй член - первый член = (-2) - (-6) = 4.

Теперь у нас есть разность арифметической прогрессии: d = 4.

  1. Найдем шестнадцатый член (a₁₆) с использованием формулы для общего члена арифметической прогрессии:

    aₙ = a₁ + (n - 1)d,

    где:

    • aₙ - n-й член прогрессии,
    • a₁ - первый член прогрессии,
    • n - порядковый номер члена прогрессии,
    • d - разность прогрессии.

    Подставим значения:

    a₁₆ = -6 + (16 - 1) * 4 = -6 + 60 = 54.

Итак, шестнадцатый член арифметической прогрессии равен 54.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос