A\5+3=-7 |x|+1=4 |x+1|=4
Ответы на вопрос
        |x|+1=4
IxI=3
x=+-3
2)
|x+1|=4
x+1=+-4
а)
x+1=-4
x₁=-5
б)
x+1=4
x₂=3
Ответ: x₁=-5, x₂=3
            To solve these equations, let's break them down one by one:
This equation appears to be written in an unusual way. If you meant to write , then we can solve it as follows:
Subtract 3 from both sides:
Now, divide both sides by 5 to isolate A:
So, is the solution to this equation.
To solve for x in this equation, you can isolate |x| by subtracting 1 from both sides:
Now, you have two cases to consider since |x| can be either positive or negative:
a) b)
So, there are two solutions: and .
Similar to the previous equation, we'll isolate |x + 1| by subtracting 1 from both sides:
Now, again, you have two cases to consider:
a)
Subtract 1 from both sides:
b)
Subtract 1 from both sides:
So, there are two more solutions: and .
In summary, for the three equations:
- has one solution: .
 - has two solutions: and .
 - has two solutions: and .
 
Похожие вопросы
			Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
- 
			
Математика
 - 
			
Литература
 - 
			
Алгебра
 - 
			
Русский язык
 - 
			
Геометрия
 - 
			
Английский язык
 - 
			
Химия
 - 
			
Физика
 - 
			
Биология
 - 
			
Другие предметы
 - 
			
История
 - 
			
Обществознание
 - 
			
Окружающий мир
 - 
			
География
 - 
			
Українська мова
 - 
			
Информатика
 - 
			
Українська література
 - 
			
Қазақ тiлi
 - 
			
Экономика
 - 
			
Музыка
 - 
			
Право
 - 
			
Беларуская мова
 - 
			
Французский язык
 - 
			
Немецкий язык
 - 
			
МХК
 - 
			
ОБЖ
 - 
			
Психология
 - 
			
Физкультура и спорт
 - 
			
Астрономия
 - 
			
Кыргыз тили
 - 
			
Оʻzbek tili
 
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			