
A\5+3=-7 |x|+1=4 |x+1|=4


Ответы на вопрос

|x|+1=4
IxI=3
x=+-3
2)
|x+1|=4
x+1=+-4
а)
x+1=-4
x₁=-5
б)
x+1=4
x₂=3
Ответ: x₁=-5, x₂=3



To solve these equations, let's break them down one by one:
This equation appears to be written in an unusual way. If you meant to write , then we can solve it as follows:
Subtract 3 from both sides:
Now, divide both sides by 5 to isolate A:
So, is the solution to this equation.
To solve for x in this equation, you can isolate |x| by subtracting 1 from both sides:
Now, you have two cases to consider since |x| can be either positive or negative:
a) b)
So, there are two solutions: and .
Similar to the previous equation, we'll isolate |x + 1| by subtracting 1 from both sides:
Now, again, you have two cases to consider:
a)
Subtract 1 from both sides:
b)
Subtract 1 from both sides:
So, there are two more solutions: and .
In summary, for the three equations:
- has one solution: .
- has two solutions: and .
- has two solutions: and .


Похожие вопросы

Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili