
Вопрос задан 09.08.2023 в 02:22.
Предмет Алгебра.
Спрашивает Чернышева Валерия.
В треугольнике АВС проведена медиана АМ . Найдите угол АМС если углы ВАС и ВСА равны 45 и 30
соответственно

Ответы на вопрос

Отвечает Никитина-Дикова Ольга.
∠ABC = 180° - (45° + 30°) = 105°
По теореме синусов:
a : sin 45° = c : sin 30°
a = c · √2/2 : (1/2) = c√2
b : sin 105° = c : sin 30°
Найдем sin 105° :
sin 105° = sin (90° + 15°) = cos 15°
cos 15 = cos( \frac{30}{2} ) = \sqrt{ \frac{cos 30 + 1}{2} } = \sqrt{ \frac{ \sqrt{3}+2 }{4} } = \frac{1}{2} \sqrt{ \frac{4+2 \sqrt{3} }{ 2 } }
cos15= \frac{1}{2} \sqrt{ \frac{ ( \sqrt{3}+1 )^{2} }{2} } = \frac{ \sqrt{3}+1 }{2 \sqrt{2} }
b = c · sin105° : sin 30° = 2c · 1/2 · (√3 + 1)/√2 = c · (√3 + 1)/√2
m² = (b² + c²)/2 - a²/4
m² = (c · (√3 + 1)/√2)²/2 + c²/2 - 2c²/4 = c²(√3 + 1)²/4
m = c · (√3 + 1)/2 = b/√2
По теореме синусов из ΔАМС:
m : sin 30° = b : sinα
sinα = 1/2 · b / m = b/(2m) = b / (2 · b/√2) = √2/2
Так как α тупой угол, α = 135°
По теореме синусов:
a : sin 45° = c : sin 30°
a = c · √2/2 : (1/2) = c√2
b : sin 105° = c : sin 30°
Найдем sin 105° :
sin 105° = sin (90° + 15°) = cos 15°
cos 15 = cos( \frac{30}{2} ) = \sqrt{ \frac{cos 30 + 1}{2} } = \sqrt{ \frac{ \sqrt{3}+2 }{4} } = \frac{1}{2} \sqrt{ \frac{4+2 \sqrt{3} }{ 2 } }
cos15= \frac{1}{2} \sqrt{ \frac{ ( \sqrt{3}+1 )^{2} }{2} } = \frac{ \sqrt{3}+1 }{2 \sqrt{2} }
b = c · sin105° : sin 30° = 2c · 1/2 · (√3 + 1)/√2 = c · (√3 + 1)/√2
m² = (b² + c²)/2 - a²/4
m² = (c · (√3 + 1)/√2)²/2 + c²/2 - 2c²/4 = c²(√3 + 1)²/4
m = c · (√3 + 1)/2 = b/√2
По теореме синусов из ΔАМС:
m : sin 30° = b : sinα
sinα = 1/2 · b / m = b/(2m) = b / (2 · b/√2) = √2/2
Так как α тупой угол, α = 135°



Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.
Давайте воспользуемся свойствами медиан треугольника.
Медиана треугольника делит противоположную сторону пополам и образует прямой угол с вершиной треугольника, к которой она проведена. Таким образом, мы имеем следующую ситуацию:
bashB / \ / \ A/_____\M / \ / \ /___\ /___\ C S V
Здесь:
- A, B и C - вершины треугольника ABC
- M - середина стороны BC (точка пересечения медианы с BC)
- S - середина стороны AC
- V - середина стороны AB
Известно, что угол ВАС = 45° и угол ВСА = 30°.
Мы также знаем, что медиана M является биссектрисой угла АМС. Так как угол ВАС = 45°, то угол ВАМ = 45° / 2 = 22.5°. А так как угол ВСА = 30°, то угол САМ = 30° / 2 = 15°.
Теперь мы можем найти угол АМС, используя свойство суммы углов треугольника:
Угол АМС = угол ВАМ + угол САМ = 22.5° + 15° = 37.5°.
Итак, угол АМС равен 37.5°.


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili