
(1/tgx)-1=cos2x/(1+tgx) - решите уравнение с помощью подстановки y=tgx


Ответы на вопрос

Подставляем
Если дробь равна 0, то числитель равен 0, а знаменатель нет
(1 - y)(y^2 - y + 1) = 0
y = tg x = 1; x = pi/4 + pi*k
y^2 - y + 1 = 0 - это уравнение корней не имеет.
Ответ: pi/4 + pi*k



To solve the equation (1/tgx) - 1 = cos(2x) / (1 + tgx) using the substitution y = tgx, follow these steps:
Step 1: Apply the substitution y = tgx Replace tgx in the equation with y:
(1/y) - 1 = cos(2x) / (1 + y)
Step 2: Express cos(2x) in terms of y We know that cos(2x) = 2 * cos^2(x) - 1. Using this trigonometric identity and the fact that tgx = y, we can express cos(2x) in terms of y:
cos(2x) = 2 * (1 - y^2) - 1 cos(2x) = 2 - 2y^2 - 1 cos(2x) = 1 - 2y^2
Step 3: Substitute the expression for cos(2x) into the equation Now, replace cos(2x) in the equation with 1 - 2y^2:
(1/y) - 1 = (1 - 2y^2) / (1 + y)
Step 4: Solve for y To solve for y, we need to get rid of the fractions. Multiply both sides by y(1 + y) to eliminate the denominators:
y(1 + y) * ((1/y) - 1) = y(1 + y) * ((1 - 2y^2) / (1 + y))
Now, simplify the equation:
(1 + y) - y = y(1 - 2y^2)
Expand and rearrange the equation:
1 + y - y - y^2 = y - 2y^3
Combine like terms:
1 - y^2 = 2y - 2y^3
Step 5: Bring all terms to one side and factor Move all terms to one side of the equation:
2y^3 - y^2 - 2y + 1 = 0
Step 6: Factor the equation Now, try to factor the equation. After some trial and error, you can find the factorization:
(y - 1)^2 * (2y + 1) = 0
Step 7: Set each factor to zero and solve for y Set each factor to zero and solve for y:
y - 1 = 0 y = 1
2y + 1 = 0 2y = -1 y = -1/2
Step 8: Find x using the original substitution Now that we have the values for y, we can find x using the original substitution y = tgx.
For y = 1: tgx = 1 x = arctan(1) x = π/4 + πk (where k is an integer)
For y = -1/2: tgx = -1/2 x = arctan(-1/2) x = -π/6 + πk (where k is an integer)
So, the solutions to the original equation are: x = π/4 + πk and x = -π/6 + πk, where k is an integer.


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili