
1-cost/sint = tg t/2


Ответы на вопрос





To solve the equation (1 - cos(t)) / sin(t) = tan(t/2), we can use trigonometric identities to simplify and solve for t.
First, let's manipulate the left-hand side of the equation using the double angle identity for cosine: cos(2θ) = 1 - 2sin^2(θ).
(1 - cos(t)) / sin(t) = tan(t/2)
1 - cos(t) = sin(t) * tan(t/2)
Now, using the identity tan(θ) = sin(θ) / cos(θ), we can replace tan(t/2) with sin(t/2) / cos(t/2):
1 - cos(t) = sin(t) * (sin(t/2) / cos(t/2))
Next, simplify the expression by dividing both sides by cos(t) and multiplying both sides by 2:
2(1 - cos(t)) = 2sin(t) * (sin(t/2) / cos(t/2))
Now, apply the double-angle identity for sine: sin(2θ) = 2sin(θ)cos(θ). This yields:
2(1 - cos(t)) = sin(t) * sin(t)
Now, use the identity sin^2(θ) + cos^2(θ) = 1:
2(1 - cos(t)) = sin^2(t)
Divide both sides by 2:
1 - cos(t) = sin^2(t) / 2
Now, use the Pythagorean identity sin^2(θ) + cos^2(θ) = 1:
1 - cos(t) = (1 - cos^2(t)) / 2
Multiply both sides by 2:
2 - 2cos(t) = 1 - cos^2(t)
Rearrange the terms:
cos^2(t) - 2cos(t) + 1 = 0
This is a quadratic equation in terms of cos(t). Let's solve it by factoring:
(cos(t) - 1)^2 = 0
Now, take the square root of both sides:
cos(t) - 1 = 0
Add 1 to both sides:
cos(t) = 1
Now, we have found that cos(t) = 1. To find the solutions for t, we can use the inverse cosine function (also known as arccos or cos^-1):
t = cos^-1(1)
The value of t that satisfies the equation is:
t = 0 degrees or t = 2π radians
Remember that trigonometric functions have periodicity, so there are infinite solutions for t, but the main solution within a given interval (0 ≤ t < 2π) is t = 0 degrees or t = 2π radians.


Похожие вопросы

Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili