
5(x-10)-(x-20)(x-10)-10x=0


Ответы на вопрос

5х-50-(х(2)-10х-20х+200)-10х=0
5х-50-х(2)+10х+20х-200-10х=0
5х-х(2)+10х+20х-10х=0+50-200
25х-х(2)=-150
х-х(2)=-150:(-25)
х-х(2)=6



Let's solve the given equation step by step:
5(x - 10) - (x - 20)(x - 10) - 10x = 0
Step 1: Expand the expressions within parentheses.
5x - 50 - (x^2 - 10x - 20x + 200) - 10x = 0
Step 2: Combine like terms.
5x - 50 - (x^2 - 30x + 200) - 10x = 0
Step 3: Distribute the negative sign to the terms inside the second set of parentheses.
5x - 50 - x^2 + 30x - 200 - 10x = 0
Step 4: Combine like terms again.
5x - x^2 + 20x - 250 = 0
Step 5: Move all terms to one side of the equation to set it to zero.
-x^2 + 25x - 250 = 0
Step 6: Multiply the entire equation by -1 to make the leading coefficient positive.
x^2 - 25x + 250 = 0
Now, we have a quadratic equation in the form of ax^2 + bx + c = 0, where a = 1, b = -25, and c = 250.
To solve this quadratic equation, we can use the quadratic formula:
x = (-b ± √(b^2 - 4ac)) / 2a
Substitute the values of a, b, and c:
x = (25 ± √((-25)^2 - 4 * 1 * 250)) / 2 * 1
x = (25 ± √(625 - 1000)) / 2
x = (25 ± √(-375)) / 2
The value inside the square root is negative, which means the quadratic equation has no real solutions. It has complex solutions. Let's proceed:
x = (25 ± √(375)i) / 2
So, the solutions for the given equation are:
x = (25 + √375i) / 2 x = (25 - √375i) / 2
Both solutions involve the imaginary unit "i" because the discriminant (b^2 - 4ac) was negative.


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili