Вопрос задан 30.07.2023 в 11:41. Предмет Алгебра. Спрашивает Храбрых Полина.

Решите уравнение У^3-у=0 16z-z^3=0 za^3-a^2=0 7y^4-28y^2=0 Решите пжл очень надо!!!

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Смирнов Евгений.
У³ -  у  = 0
у(у²  - 1) = 0
у(у²  - 1²) = 0
у(у - 1)(у + 1) = 0
произведение  равно 0, если один из множителей равен 0.
у₁ = 0
у - 1 = 0
у₂ = 1
у + 1= 0
у₃ = - 1

16z  - z³  = 0
-z( z²  - 16) = 0
-z(z²  - 4²) = 0
-z(z -4)(z +4) =0
-z = 0
z₁ = 0
z - 4 = 0
z₂ = 4
z + 4 = 0
z₃ = - 4

za³ - a² = 0
относительно z :
za³ = a²
z = a²/a³
z = 1/a


7y⁴ - 28y² = 0
7y²(y² - 4) = 0
7y² (y  - 2)(y + 2) = 0
7y² = 0
y₁ = 0
y - 2 =0
y₂ = 2
y + 2 = 0
y₃ = - 2
0 0
Отвечает Лебедев Павел.
1. \ y^3-y=0 \\ y(y^2-1)=0 \\ x_1 = 0 \ ; \ x_2 = -1 \ ; \ x_3 = 1 \\ \\ 2. \ 16z-z^3=0 \\ z(16-z^2)=0 \\ z_1 = 0 \ ; \ z_2 = 4 \ ; \ z_3 = -4 \\ \\ 3. \ za^3-a^2=0 \\ za^3=a^2 \\ z =  \frac{1}{a}  \\ \\ 4. \ 7y^4-28y^2=0 \\ 7y^2(y^2-4)=0 \\ y_1=y_2=0 \ ; \ y_3 = -2 \ ; \ y_4 = 2
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Давайте решим каждое уравнение по очереди:

  1. У^3 - у = 0 Факторизуем уравнение: y(y^2 - 1) = 0

    Теперь можем решить: y = 0 или y^2 - 1 = 0

    Если y^2 - 1 = 0: y^2 = 1 y = ±1

    Итак, решения уравнения: y = 0, y = 1, y = -1.

  2. 16z - z^3 = 0 Факторизуем уравнение: z(16 - z^2) = 0

    Теперь можем решить: z = 0 или 16 - z^2 = 0

    Если 16 - z^2 = 0: z^2 = 16 z = ±√16 z = ±4

    Итак, решения уравнения: z = 0, z = 4, z = -4.

  3. za^3 - a^2 = 0 Факторизуем уравнение: a^2(za - 1) = 0

    Теперь можем решить: a^2 = 0 или za - 1 = 0

    Если za - 1 = 0: za = 1 a = 1/z

    Итак, решения уравнения: a = 0, a = 1/z, где z ≠ 0.

  4. 7y^4 - 28y^2 = 0 Факторизуем уравнение: 7y^2(y^2 - 4) = 0

    Теперь можем решить: y^2 = 0 или y^2 - 4 = 0

    Если y^2 - 4 = 0: y^2 = 4 y = ±√4 y = ±2

    Итак, решения уравнения: y = 0, y = 2, y = -2.

Надеюсь, это помогло! Если у вас возникнут дополнительные вопросы, не стесняйтесь задать.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос