
Cos x-cos y=√2__x+y=П.Решыте систему уровнений


Ответы на вопрос





To solve the system of equations:
- cos(x) - cos(y) = √2
- x + y = π
We can use the trigonometric identity for the difference of two cosines:
cos(A) - cos(B) = -2 * sin((A + B) / 2) * sin((A - B) / 2)
Let's use this identity to rewrite equation (1):
cos(x) - cos(y) = -2 * sin((x + y) / 2) * sin((x - y) / 2)
Now we'll substitute the value of (x + y) from equation (2) into the equation above:
cos(x) - cos(y) = -2 * sin(π / 2) * sin((x - y) / 2) cos(x) - cos(y) = -2 * sin((x - y) / 2)
Now, we can rewrite the system as a set of equations:
- -2 * sin((x - y) / 2) = √2
- x + y = π
Now we'll solve the first equation for sin((x - y) / 2):
sin((x - y) / 2) = -√2 / 2
Now, we'll find the angle whose half-angle has a sine of -√2 / 2. The two angles that satisfy this condition are:
- (x - y) / 2 = -π / 4
- (x - y) / 2 = 3 * π / 4
Now we can solve for (x - y) in both cases:
- x - y = -π / 2
- x - y = 3 * π / 2
Now, we have a system of two equations:
- x + y = π
- x - y = -π / 2 or x - y = 3 * π / 2
Let's solve for x and y in both cases:
Case 1: x - y = -π / 2 Adding equations (1) and (2): 2x = π / 2 x = π / 4
Substituting the value of x in equation (1): π / 4 + y = π y = π - π / 4 y = 3π / 4
So, the solutions for Case 1 are x = π / 4 and y = 3π / 4.
Case 2: x - y = 3 * π / 2 Adding equations (1) and (2): 2x = 5 * π / 2 x = 5 * π / 4
Substituting the value of x in equation (1): 5 * π / 4 + y = π y = π - 5 * π / 4 y = -π / 4
So, the solutions for Case 2 are x = 5π / 4 and y = -π / 4.
In conclusion, the system of equations has two sets of solutions:
- x = π / 4 and y = 3π / 4
- x = 5π / 4 and y = -π / 4


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili