Lod2(2x+1)>log2(x-1)
Ответы на вопрос
x ∈ (- 2 ; + ∞)
С учётом ОДЗ окончательный ответ:
x ∈ (1 ; + ∞)
To solve the inequality , we need to be careful with the domain of the logarithmic functions. Since the base of the logarithm is 2, the argument of the logarithm must be greater than 0.
Step 1: Find the domain restrictions For to be defined, we need since we cannot take the logarithm of a non-positive number. Solving this inequality:
For to be defined, we need . Solving this inequality:
Step 2: Identify the critical points
The critical points are the values of where and are equal. Therefore:
Step 3: Test intervals
We now have three intervals: , , and . We need to test the inequality within each interval to find the solution.
Interval 1: Choose (since it's a simple value less than ):
-> not defined (logarithm of a non-positive number)
Interval 2: Choose (since it's a simple value within the interval):
-> not defined (logarithm of a non-positive number)
Since is not greater than , this interval does not satisfy the inequality.
Interval 3: Choose (since it's a simple value greater than ):
Since is greater than , this interval satisfies the inequality.
Step 4: Final solution
The solution to the inequality is (for greater than 1).
However, we need to keep in mind that is also part of the domain, but for that interval, the inequality does not hold because is not defined. So the final solution is .
Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili
