
2≤x²+x<6 розвязати ............


Ответы на вопрос




x^2+x≥2
x^2+x-2≥0
D=1+8=9
x1=(-1+3)/2*1=2/2=1
x2=(-1-3)/2*1=-4/2=-2
(-oo;-2]U[1;+oo)
x^2+x<6
x^2+x-6<0
D=1+24=25
x1=(-1+5)/2*1=4/2=2
x2=(-1-5)/2*1=-6/2=-3
(-3;2)
///////////////////////////////////////////////////////////////////
______-3_____________-2__________1_________2_________
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
(-3;-2]U[1;2)



x^2+x≥2
x^2+x-2≥0
D=1+8=9
x1=(-1+3)/2*1=2/2=1
x2=(-1-3)/2*1=-4/2=-2
(-oo;-2]U[1;+oo)
x^2+x<6
x^2+x-6<0
D=1+24=25
x1=(-1+5)/2*1=4/2=2
x2=(-1-5)/2*1=-6/2=-3
(-3;2)
///////////////////////////////////////////////////////////////////
______-3_____________-2__________1_________2_________
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
(-3;-2]U[1;2)



To solve the inequality 2 ≤ x² + x < 6, we need to find the values of x that satisfy the inequality. Let's break it down into two separate inequalities:
- x² + x ≥ 2
- x² + x < 6
Step 1: Solve x² + x ≥ 2
To solve the first inequality, x² + x ≥ 2, we need to find the values of x that make the expression greater than or equal to 2. To do that, we'll move all terms to one side of the inequality:
x² + x - 2 ≥ 0
Now, we can factor the quadratic expression:
(x + 2)(x - 1) ≥ 0
To find the solution, we need to consider three intervals: x < -2, -2 ≤ x ≤ 1, and x > 1. We'll pick test points from each interval and check if they satisfy the inequality:
Test point x = -3 (x < -2): (-3 + 2)(-3 - 1) ≥ 0 (-1)(-4) ≥ 0 4 ≥ 0 (True)
Test point x = 0 (-2 ≤ x ≤ 1): (0 + 2)(0 - 1) ≥ 0 (2)(-1) ≥ 0 -2 ≥ 0 (False)
Test point x = 2 (x > 1): (2 + 2)(2 - 1) ≥ 0 (4)(1) ≥ 0 4 ≥ 0 (True)
The solutions for x² + x ≥ 2 are x ≤ -2 and x > 1.
Step 2: Solve x² + x < 6
To solve the second inequality, x² + x < 6, we need to find the values of x that make the expression less than 6. To do that, we'll move all terms to one side of the inequality:
x² + x - 6 < 0
Now, we can factor the quadratic expression:
(x + 3)(x - 2) < 0
To find the solution, we again need to consider three intervals: x < -3, -3 ≤ x ≤ 2, and x > 2. We'll pick test points from each interval and check if they satisfy the inequality:
Test point x = -4 (x < -3): (-4 + 3)(-4 - 2) < 0 (-1)(-6) < 0 6 < 0 (False)
Test point x = 0 (-3 ≤ x ≤ 2): (0 + 3)(0 - 2) < 0 (3)(-2) < 0 -6 < 0 (True)
Test point x = 3 (x > 2): (3 + 3)(3 - 2) < 0 (6)(1) < 0 6 < 0 (False)
The solutions for x² + x < 6 are -3 ≤ x ≤ 2.
Combining the results from both inequalities:
- x ≤ -2 or x > 1
- -3 ≤ x ≤ 2
The final solution for the original inequality 2 ≤ x² + x < 6 is:
-3 ≤ x ≤ 2, and x > 1.


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili