
1) (x^2+x)\4 - (3-7x)\20 = 0.3 2) x^4-4x^2-5=0 3) 1\x-2 + 1\x+2 = 3\8 \= деление ^(цифра) =
степень

Ответы на вопрос

(х^2+х)/4-(3-7х)/20=0.3
5(х^2+х)-(3-7х)=0.3*20
5х^2+5х-3+7х=6
5х^2+12х-9=0
Д=144+4*5*9=144+180=324
х1=(-12+18)/10=6/10=0.6
х2=(-12-18)/10=-30/10=-3
2)
х^4-4х^2-5=0
х^2=t
t^2-4t-5=0
Д=16+4*5=16+20=36
t1=(4+6)/2=10/2=5
t2=(4-6)/2=-1 не подходит
х^2=5
х=±√5
3)
1/(х-2) + 1/(х+2)= 3/8
8(х+2)+8(х-2)=3(х^2-4)
16х=3х^2-12
3х^2-16х-12=0
Д=256+4*3*12=256+144=400
х1=(16+20)/6=6
х2=(16-20)/6=-4/6=-2/3
ОДЗ х≠2, х≠-2, корни подходят



Ответ: -3; 0.6.
2)
Пусть x^2 = t, t > 0
корень t2 не удовл.
Вернемся к замене:
Ответ: +- sqrt(5).
3)
ОДЗ: x не равно +-2
Ответ: -2/3; 6.



Sure, I'll help you solve these equations one by one:
- Solve the equation:
(x^2 + x)/4 - (3 - 7x)/20 = 0.3
To solve this equation, let's first get rid of the fractions by multiplying everything by 20 to clear the denominators:
20 * [(x^2 + x)/4] - 20 * [(3 - 7x)/20] = 20 * 0.3
5 * (x^2 + x) - (3 - 7x) = 6
Now distribute the multiplication:
5x^2 + 5x - 3 + 7x = 6
Combine like terms:
5x^2 + 12x - 3 = 6
Move all terms to one side to set the equation to zero:
5x^2 + 12x - 9 = 0
Now, we can either factor the quadratic equation or use the quadratic formula to find the values of x. Let's use the quadratic formula:
The quadratic formula is given by: x = (-b ± √(b^2 - 4ac)) / 2a
In this case, a = 5, b = 12, and c = -9:
x = [ -12 ± √(12^2 - 4 * 5 * -9) ] / 2 * 5 x = [ -12 ± √(144 + 180) ] / 10 x = [ -12 ± √324 ] / 10 x = [ -12 ± 18 ] / 10
So, we have two solutions for x:
- x = (18 - 12) / 10 = 6 / 10 = 0.6
- x = (-18 - 12) / 10 = -30 / 10 = -3
Therefore, the solutions to the equation are x = 0.6 and x = -3.
- Solve the equation:
x^4 - 4x^2 - 5 = 0
To solve this equation, let's make a substitution to simplify the equation. Let's set y = x^2, then the equation becomes:
y^2 - 4y - 5 = 0
Now, we can solve this quadratic equation for y:
Using the quadratic formula, with a = 1, b = -4, and c = -5:
y = [ -(-4) ± √((-4)^2 - 4 * 1 * -5) ] / 2 * 1 y = [ 4 ± √(16 + 20) ] / 2 y = [ 4 ± √36 ] / 2 y = [ 4 ± 6 ] / 2
So, we have two potential solutions for y:
- y = (4 + 6) / 2 = 10 / 2 = 5
- y = (4 - 6) / 2 = -2 / 2 = -1
Now, remember that y = x^2, so we substitute back to find the values of x:
x^2 = 5 Taking the square root of both sides: x = ±√5
x^2 = -1 There are no real solutions for x in this case because you can't take the square root of a negative number and get a real result.
Therefore, the real solutions to the equation are x = √5 and x = -√5.
- Solve the equation:
1/(x - 2) + 1/(x + 2) = 3/8
To solve this equation, let's first find a common denominator for the fractions. The common denominator is (x - 2)(x + 2). So the equation becomes:
[(x + 2) + (x - 2)] / [(x - 2)(x + 2)] = 3/8
Simplify the numerator:
(2x) / [(x - 2)(x + 2)] = 3/8
Now, cross-multiply to get rid of the fraction:
8 * 2x = 3 * (x - 2)(x + 2)
16x = 3(x^2 - 4)
Expand the right side:
16x = 3x^2 - 12
Move all terms to one side to set the equation to zero:
3x^2 - 16x - 12 = 0
Now, you can solve this quadratic equation using the quadratic formula or factoring. Let's use the quadratic formula:
The quadratic formula is given by: x = (-b ± √(b^2 - 4ac)) / 2a
In this case, a = 3, b = -16, and c = -12:
x = [ -(-16) ± √((-16)^2 - 4 * 3 * -12) ] / 2 * 3 x = [ 16 ± √(256 + 144) ] / 6 x = [ 16 ± √400 ] / 6 x = [ 16 ± 20 ] / 6
So, we have two potential solutions for x:
- x = (16 + 20) / 6 = 36 / 6 = 6
- x = (16 - 20) / 6 = -4 / 6 = -2/3
Therefore, the solutions to the equation are x = 6 and x = -2/3.


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili