
Log3 √7*(8x+1) = 6 Решить логарифмическое уравнение


Ответы на вопрос




To solve the logarithmic equation log₃(√7*(8x+1)) = 6, we'll use the properties of logarithms. The main property we'll use is:
logₐ(b) = c is equivalent to a^c = b
Let's proceed with the solution:
Step 1: Convert the equation to exponential form: log₃(√7*(8x+1)) = 6 can be rewritten as 3^6 = √7*(8x+1)
Step 2: Solve for (8x+1): 3^6 = √7*(8x+1)
Since 3^6 = 729, the equation becomes: 729 = √7*(8x+1)
Step 3: Isolate (8x+1) on one side of the equation: Divide both sides by √7 to solve for (8x+1):
(8x+1) = 729/√7
Step 4: Calculate the value on the right-hand side: To simplify 729/√7, we can multiply both the numerator and denominator by √7:
(8x+1) = (729/√7) * (√7/√7) (8x+1) = (729*√7)/(√7 * √7)
Since √7 * √7 = 7, the equation becomes: (8x+1) = (729 * √7) / 7
Step 5: Calculate the value on the right-hand side: (8x+1) = (729 * √7) / 7 (8x+1) = 1041√7 / 7
Step 6: Isolate x on one side of the equation: Subtract 1 from both sides to solve for x:
8x = (1041√7 / 7) - 1
Step 7: Calculate the value on the right-hand side: 8x = (1041√7 / 7) - 1
Now, divide both sides by 8:
x = [(1041√7 / 7) - 1] / 8
This is the final solution for the logarithmic equation. However, if you need a numerical approximation for x, you can calculate the value using a calculator.


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili