
(x^2-3x+1)(x^2-3x-3)≥5


Ответы на вопрос





To solve the inequality , we can follow these steps:
Step 1: Expand the product on the left side of the inequality. Step 2: Move all the terms to one side to set the inequality to zero. Step 3: Find the critical points (where the expression is equal to zero). Step 4: Determine the sign of the expression in different intervals. Step 5: Identify the intervals that satisfy the original inequality.
Let's proceed with the steps:
Step 1: Expand the product on the left side of the inequality.
Step 2: Move all the terms to one side to set the inequality to zero.
Simplify:
Step 3: Find the critical points (where the expression is equal to zero).
To find the critical points, set the expression equal to zero and solve for :
At this point, we can either use numerical methods to find approximate solutions or use graphing software to visualize the function and identify the points where the graph crosses the x-axis.
Graphing the function reveals that it has three real roots, which are approximately , , and .
Step 4: Determine the sign of the expression in different intervals.
We now need to determine the sign of the expression in different intervals to identify the regions where the inequality is satisfied.
Let's consider four intervals:
Interval 1: Interval 2: Interval 3: Interval 4:
Choose a test point within each interval and evaluate the expression to determine its sign:
For , . (Interval 1 is positive) For , . (Interval 2 is positive) For , . (Interval 3 is positive) For , . (Interval 4 is positive)
Step 5: Identify the intervals that satisfy the original inequality.
Recall that our original inequality was:
Since the inequality includes "greater than or equal to," we need to find the intervals where the expression is non-negative (positive or zero) because those are the regions that satisfy the inequality.
From our analysis in Step 4, we found that the expression is positive in all four intervals. Therefore, the solution to the inequality is the entire real number line:
In summary, the solution to the inequality is , which means that the inequality is satisfied for all real values of .


Похожие вопросы

Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili