Вопрос задан 28.07.2023 в 23:49. Предмет Алгебра. Спрашивает Филиппов Константин.

(x^2-3x+1)(x^2-3x-3)≥5

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Митрофанова Ника.
Решение во вложении.

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

To solve the inequality (x23x+1)(x23x3)5(x^2-3x+1)(x^2-3x-3) \geq 5, we can follow these steps:

Step 1: Expand the product on the left side of the inequality. Step 2: Move all the terms to one side to set the inequality to zero. Step 3: Find the critical points (where the expression is equal to zero). Step 4: Determine the sign of the expression in different intervals. Step 5: Identify the intervals that satisfy the original inequality.

Let's proceed with the steps:

Step 1: Expand the product on the left side of the inequality.

(x23x+1)(x23x3)=x46x3+2x2+9x3(x^2-3x+1)(x^2-3x-3) = x^4 - 6x^3 + 2x^2 + 9x - 3

Step 2: Move all the terms to one side to set the inequality to zero.

x46x3+2x2+9x350x^4 - 6x^3 + 2x^2 + 9x - 3 - 5 \geq 0

Simplify:

x46x3+2x2+9x80x^4 - 6x^3 + 2x^2 + 9x - 8 \geq 0

Step 3: Find the critical points (where the expression is equal to zero).

To find the critical points, set the expression equal to zero and solve for xx:

x46x3+2x2+9x8=0x^4 - 6x^3 + 2x^2 + 9x - 8 = 0

At this point, we can either use numerical methods to find approximate solutions or use graphing software to visualize the function and identify the points where the graph crosses the x-axis.

Graphing the function f(x)=x46x3+2x2+9x8f(x) = x^4 - 6x^3 + 2x^2 + 9x - 8 reveals that it has three real roots, which are approximately x1.285x \approx -1.285, x0.232x \approx 0.232, and x2.052x \approx 2.052.

Step 4: Determine the sign of the expression in different intervals.

We now need to determine the sign of the expression f(x)=x46x3+2x2+9x8f(x) = x^4 - 6x^3 + 2x^2 + 9x - 8 in different intervals to identify the regions where the inequality is satisfied.

Let's consider four intervals:

Interval 1: x<1.285x < -1.285 Interval 2: 1.285<x<0.232-1.285 < x < 0.232 Interval 3: 0.232<x<2.0520.232 < x < 2.052 Interval 4: x>2.052x > 2.052

Choose a test point within each interval and evaluate the expression f(x)f(x) to determine its sign:

For x=2x = -2, f(2)=26>0f(-2) = 26 > 0. (Interval 1 is positive) For x=1x = -1, f(1)=11>0f(-1) = 11 > 0. (Interval 2 is positive) For x=1x = 1, f(1)=3>0f(1) = 3 > 0. (Interval 3 is positive) For x=3x = 3, f(3)=41>0f(3) = 41 > 0. (Interval 4 is positive)

Step 5: Identify the intervals that satisfy the original inequality.

Recall that our original inequality was:

x46x3+2x2+9x80x^4 - 6x^3 + 2x^2 + 9x - 8 \geq 0

Since the inequality includes "greater than or equal to," we need to find the intervals where the expression f(x)f(x) is non-negative (positive or zero) because those are the regions that satisfy the inequality.

From our analysis in Step 4, we found that the expression f(x)f(x) is positive in all four intervals. Therefore, the solution to the inequality is the entire real number line:

x(,)x \in (-\infty, \infty)

In summary, the solution to the inequality (x23x+1)(x23x3)5(x^2-3x+1)(x^2-3x-3) \geq 5 is x(,)x \in (-\infty, \infty), which means that the inequality is satisfied for all real values of xx.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос