Вопрос задан 28.07.2023 в 22:49. Предмет Алгебра. Спрашивает Стрілець Віталій.

Формаула разности квадратов! 7. Разложите на множители: а) 5x^2 - 125 б) 64 - 4y^2 в) ax^2 - ay^2

г) x^3 - xy^2 д) (x+y)^2 - z^2 е) 81 - (a + 2b)^2 ж) (a + 2b)^2 - (a - 2b)^2 з) (c + d)^2 - (2c + 3d)^2 и) a^2n - b^2m к) c^4n - d^4
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Бай Виталий.
А)
5 {x}^{2} - 125 = 5( {x}^{2} - 25) = 5(x - 5)(x + 5)
б)
64 - 4 {y}^{2} = 4(16 - {y}^{2} ) = 4(4 - y)(4 + y)
в)
a {x}^{2} - a {y}^{2} = a( {x}^{2} - {y}^{2} ) = a(x - y)(x + y)
г)
 {x}^{3} - x {y}^{2} = x( {x}^{2} - {y}^{2} ) = x(x - y)(x + y)
д)
 {(x + y)}^{2} - {z}^{2} = (x + y + z)(x + y - z)
е)
81 - {(a + 2b)}^{2} = (9 + a + 2b)(9 - a - 2b)
ж)
 {(a + 2b)}^{2} - {(a - 2b)}^{2} = (a + 2b + a - 2b)(a + 2b - a + 2b) = 2a \times 4b = 8ab
з)
 {(c + d)}^{2} - {(2c + 3d)}^{2} = (c + d + 2c + 3d)(c + d - 2c - 3d) = (3c + 4d)( - c - 2d)
и)
 {a}^{2n} - {b}^{2m} = ({a }^{n} - {b}^{m} )({a}^{n} + {b}^{n} )
к)
 {c}^{4n} - {d}^{4} = ( {c}^{2n} - {d}^{2} )( {c}^{2n} + {d}^{2} ) = ({c}^{n} - d)({c}^{n} + d)({c}^{2n} + d)
0 0
Отвечает Kushnirenko Stanislav.

а) 5x² - 125  = 5(x² - 25)  = 5(х-5)(х+5)

б) 64 - 4y² = 8² - (2у)²  = (8-2у)(8+2у)

в) ax² - ay²  = а(х² - у²) = а(х-у)(х+у)

г) x³ - xy² = х(х² - у²) = х(х-у)(х+у)

д) (x+y)² - z² = (х+у-z)(x+y+z)

е) 81 - (a + 2b)² =  9² - (a + 2b)² =  (9-a-2b)(9+a+2b)

ж) (a + 2b)² - (a - 2b)² = (a+2b-a+2b)(a+2b+a-2b)  = 4b · 2a = 8ab

з) (c + d)² - (2c + 3d)² =  (c+d-2c-3d)(c+d+2c+3d)  = (-c-2d)(3c+4d) =

 = -(c+2d)(3c+4d)

и)  a^{2n} -b^{2m} = (a^n)^2-(b^m)^2=(a^n-b^m)(a^n+a^m)

к) c^{4n} - d^4 = (c^{2n})^2 - (d^2)^2 = (c^{2n}-d^2)(c^{2n}+d^2)=(c^{n}-d)(c^{n}+d)(c^{2n}+d^2)

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для разложения на множители разности квадратов используется следующая формула:

Формула разности квадратов: a^2 - b^2 = (a + b)(a - b)

Теперь разложим данные выражения на множители:

а) 5x^2 - 125

Сначала найдем общий множитель, который равен 5:

5(x^2 - 25)

Теперь разложим выражение внутри скобок как разность квадратов:

5(x^2 - 25) = 5(x + 5)(x - 5)

б) 64 - 4y^2

Сначала найдем общий множитель, который равен 4:

4(16 - y^2)

Теперь разложим выражение внутри скобок как разность квадратов:

4(16 - y^2) = 4(4 + y)(4 - y)

в) ax^2 - ay^2

Сначала найдем общий множитель, который равен a:

a(x^2 - y^2)

Теперь разложим выражение внутри скобок как разность квадратов:

a(x^2 - y^2) = a(x + y)(x - y)

г) x^3 - xy^2

В данном случае нельзя применить формулу разности квадратов. Это выражение нельзя разложить на множители с помощью данной формулы.

д) (x + y)^2 - z^2

Это выражение представляет собой разность квадратов:

((x + y) + z)((x + y) - z) = (x + y + z)(x + y - z)

е) 81 - (a + 2b)^2

Сначала найдем общий множитель, который равен 81:

81 - (a + 2b)^2 = 81 - a^2 - 4ab - 4b^2

Теперь разложим внутреннее выражение как разность квадратов:

81 - a^2 - 4ab - 4b^2 = (9 - a - 2b)(9 + a + 2b)

ж) (a + 2b)^2 - (a - 2b)^2

Это выражение также представляет собой разность квадратов:

((a + 2b) + (a - 2b))((a + 2b) - (a - 2b)) = (2a + 4b)(4b) = 4b(2a + 4b)

з) (c + d)^2 - (2c + 3d)^2

Это выражение представляет собой разность квадратов:

((c + d) + (2c + 3d))((c + d) - (2c + 3d)) = (3c + 4d)(-c - 2d) = -(3c + 4d)(c + 2d)

и) a^2n - b^2m

Это выражение представляет собой разность квадратов:

a^2n - b^2m = (a^n + b^m)(a^n - b^m)

к) c^4n - d^4

Это выражение также представляет собой разность квадратов:

c^4n - d^4 = (c^(2n) + d^(2n))(c^(2n) - d^(2n))

Обратите внимание, что не все выражения можно разложить с использованием формулы разности квадратов. Некоторые из них могут быть разложены другими методами, но в данной формуле только разности квадратов.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос