Вопрос задан 27.07.2023 в 23:17. Предмет Алгебра. Спрашивает Арсаев Альберт.

Y=0.5(x+6)^2+8 построить график функций

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Зарубкина Ксения.
___________________________

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

To plot the graph of the given function Y=0.5(x+6)2+8Y = 0.5(x+6)^2 + 8, we can follow these steps:

Step 1: Identify the vertex of the parabola. Step 2: Determine the direction of the parabola (opening upwards or downwards). Step 3: Find the y-intercept. Step 4: Find the x-intercepts (if they exist). Step 5: Plot additional points if needed. Step 6: Draw the graph.

Let's start by identifying the vertex. The given function is in the form of Y=a(xh)2+kY = a(x - h)^2 + k, where (h, k) represents the vertex of the parabola.

Comparing with the given function: a=0.5a = 0.5 h=6h = -6 k=8k = 8

Step 1: Vertex The vertex is at the point (-6, 8).

Step 2: Direction of the parabola Since the coefficient of x2x^2 is positive (0.5), the parabola opens upwards.

Step 3: y-intercept To find the y-intercept, set x=0x = 0 in the equation: Y=0.5(0+6)2+8Y = 0.5(0+6)^2 + 8 Y=0.5(6)2+8Y = 0.5(6)^2 + 8 Y=0.5(36)+8Y = 0.5(36) + 8 Y=18+8Y = 18 + 8 Y=26Y = 26

The y-intercept is at the point (0, 26).

Step 4: x-intercepts To find the x-intercepts, set Y=0Y = 0 in the equation: 0=0.5(x+6)2+80 = 0.5(x+6)^2 + 8 8=0.5(x+6)2-8 = 0.5(x+6)^2 16=(x+6)2-16 = (x+6)^2

Taking the square root on both sides: x+6=±16x + 6 = \pm \sqrt{-16} x+6=±4ix + 6 = \pm 4i

Since the solutions are complex numbers (4i4i and 4i-4i), the parabola does not intersect the x-axis, and thus, there are no real x-intercepts.

Step 5: Additional points You can choose some additional values for x and calculate the corresponding Y values to plot more points on the graph.

Let's pick a few x values: When x=8x = -8: Y=0.5(8+6)2+8=0.5(2)2+8=0.5(4)+8=2+8=10Y = 0.5(-8+6)^2 + 8 = 0.5(-2)^2 + 8 = 0.5(4) + 8 = 2 + 8 = 10

When x=4x = -4: Y=0.5(4+6)2+8=0.5(2)2+8=0.5(4)+8=2+8=10Y = 0.5(-4+6)^2 + 8 = 0.5(2)^2 + 8 = 0.5(4) + 8 = 2 + 8 = 10

When x=2x = -2: Y=0.5(2+6)2+8=0.5(4)2+8=0.5(16)+8=8+8=16Y = 0.5(-2+6)^2 + 8 = 0.5(4)^2 + 8 = 0.5(16) + 8 = 8 + 8 = 16

Step 6: Plot the graph Now that we have the vertex and a few additional points, we can plot the graph.

The graph will be a parabola that opens upwards, passing through the vertex (-6, 8), and it won't intersect the x-axis (no real x-intercepts). It will pass through the y-intercept (0, 26).

Note: Since the parabola doesn't have any real x-intercepts, it won't be a full parabola, but rather a portion of it.

Here's the graph:

markdown
| 30 -| * (0, 26) * | * * 20 -| * * | * * 10 -| * * | * * 0 -| * * | * * -10 -| * * | * * -20 -| * * |* * -30 -|__________________________________________*__ -10 -5 0 5 10 15

Please note that the graph may not be perfect due to limitations in ASCII art, but it should give you a rough idea of the shape of the parabola. If you have access to graphing software or tools, you can plot the function more accurately.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос