
Система x^2+4x<1 x^2+4x>-1


Ответы на вопрос

решим оба квадратных уравнения:
1)x^2+4x-1<0;
D=16+4*1=20=4*5;
x1=(-4+2√5)/2=-2+√5;
x1=(-4-2√5)/2=-2-√5;
+ - +
___-2-√5____-2+√5____
-2-√5<x<-2+√5;
2)x^2+4x+1>0;
D=16-4*1=12=4*3;
x1=(-4+2√3)/2=-2+√3;
x1=(-4-2√3)/2=-2-√3;
+ - +
___-2-√3____-2+√3____
x<-2-√3;
x>-2+√3;
x ∈ (-2-√5;-2-√3) ∪ (-2+√3;-2+√5);



To solve the inequalities x^2 + 4x < 1 and x^2 + 4x > -1, we need to find the values of x that satisfy each inequality separately. Let's solve them step by step:
- x^2 + 4x < 1:
To solve this inequality, we'll first move all terms to one side to get a quadratic inequality in standard form:
x^2 + 4x - 1 < 0
Now, let's find the critical points by setting the expression inside the inequality to zero and solving for x:
x^2 + 4x - 1 = 0
Using the quadratic formula, we get:
x = (-4 ± √(4^2 - 41(-1))) / 2*1 x = (-4 ± √(16 + 4)) / 2 x = (-4 ± √20) / 2 x = (-4 ± 2√5) / 2 x = -2 ± √5
So, the critical points are approximately x = -2 - √5 and x = -2 + √5.
Next, we'll test intervals to determine where the inequality is satisfied. We can use test points from each interval:
Test x = -3 (choose a value less than -2 - √5): x^2 + 4x = (-3)^2 + 4*(-3) = 9 - 12 = -3 (which is < 1)
Test x = 0 (choose a value between -2 - √5 and -2 + √5): x^2 + 4x = 0^2 + 4*0 = 0 (which is < 1)
Test x = 1 (choose a value greater than -2 + √5): x^2 + 4x = 1^2 + 4*1 = 1 + 4 = 5 (which is NOT < 1)
Now, we can determine the solution based on the tests:
-∞ < x < -2 - √5 or -2 + √5 < x < ∞
- x^2 + 4x > -1:
To solve this inequality, we'll first move all terms to one side:
x^2 + 4x + 1 > 0
Now, let's find the critical points by setting the expression inside the inequality to zero and solving for x:
x^2 + 4x + 1 = 0
Using the quadratic formula, we get:
x = (-4 ± √(4^2 - 411)) / 2*1 x = (-4 ± √(16 - 4)) / 2 x = (-4 ± √12) / 2 x = (-4 ± 2√3) / 2 x = -2 ± √3
So, the critical points are approximately x = -2 - √3 and x = -2 + √3.
Next, we'll test intervals to determine where the inequality is satisfied:
Test x = -3 (choose a value less than -2 - √3): x^2 + 4x = (-3)^2 + 4*(-3) + 1 = 9 - 12 + 1 = -2 (which is > -1)
Test x = 0 (choose a value between -2 - √3 and -2 + √3): x^2 + 4x = 0^2 + 4*0 + 1 = 1 (which is > -1)
Test x = 1 (choose a value greater than -2 + √3): x^2 + 4x = 1^2 + 4*1 + 1 = 6 (which is > -1)
Now, we can determine the solution based on the tests:
-∞ < x < -2 - √3 or -2 + √3 < x < ∞
Combining both solutions, we get the final answer:
-∞ < x < -2 - √5 or -2 + √5 < x < ∞


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili