
Система х^2-х<0 -(х^2-х)<2


Ответы на вопрос

решение второго неравенства:
x²-x<2
x²-x-2<0
x²-x-2=0
D=1+8=9
x1=(1+3)/2=2
x1=(1-3)/2=-1
Получились три интервала (-∞;-1)∪(-1;2)∪(2;+∞)
Функция меньше 0 на интервале (-1;2)
решение первого неравенства
x²-x>0
x²-x=0
x(x-1)=0
x=0 и x=1
Получили три интервала (-∞;0)∪(0;1)∪(1;+∞)
Функция больше 0 на интервалах (-∞;0) и (1;+∞)
Пересечением решений первого и второго неравенств являются интервалы (-1;0)∪(1;2)



To solve the inequalities, let's break it down step by step:
Step 1: Solve
To find the solutions for this inequality, we'll first factor the expression:
Now, let's factor it:
Next, we'll find the critical points by setting each factor to zero and solving for :
and , which gives
Now, we can use a sign chart or test intervals to find where the inequality is true. We'll test three intervals: , , and .
- Test in : → → [False]
- Test in : → → [True]
- Test in : → → [False]
So, the solution for is .
Step 2: Solve
Let's simplify the inequality first:
Distribute the negative sign inside the parentheses:
Now, let's move all terms to the left side:
At this point, the inequality is in the same form as the one in Step 1. We can follow a similar process to find the solution:
Factor:
Now, find the critical points by setting each factor to zero and solving for :
Now, factor the quadratic:
Solve for :
→
→
Test intervals: , , and .
- Test in : → → [True]
- Test in : → [True]
- Test in : →