
Sin⁴a+Cos⁴a=1-0.5Sin²×2a


Ответы на вопрос

I hope this helps you




Let's prove the given trigonometric identity step by step:
Starting with the left-hand side (LHS): LHS = sin^4(a) + cos^4(a)
Now, we know the following trigonometric identities:
- sin^2(a) + cos^2(a) = 1
- sin^2(2a) + cos^2(2a) = 1
We can use these identities to rewrite the LHS in terms of sin^2(a) and cos^2(a): LHS = (sin^2(a))^2 + (cos^2(a))^2
Next, we can apply identity #1 to the above expression: LHS = (1 - cos^2(a))^2 + (cos^2(a))^2
Expanding the squared terms: LHS = (1 - 2cos^2(a) + cos^4(a)) + (cos^2(a))^2
Simplifying: LHS = 1 - 2cos^2(a) + cos^4(a) + cos^4(a)
Now, we can combine like terms: LHS = 1 + 2cos^4(a) - 2cos^2(a)
Now, let's work on the right-hand side (RHS): RHS = 1 - 0.5sin^2(2a)
Using identity #2, we can express sin^2(2a) in terms of sin^2(a) and cos^2(a): sin^2(2a) = 2sin^2(a)cos^2(a)
Now, we can substitute this into the RHS: RHS = 1 - 0.5(2sin^2(a)cos^2(a))
RHS = 1 - sin^2(a)cos^2(a)
Now, we can use the identity sin^2(a)cos^2(a) = (sin^2(a))(1 - sin^2(a)): RHS = 1 - (sin^2(a))(1 - sin^2(a))
Using the identity sin^2(a) + cos^2(a) = 1, we can simplify further: RHS = 1 - (sin^2(a))(cos^2(a))
Now, we can use the double-angle identity for sine: sin(2a) = 2sin(a)cos(a) sin^2(a) = (1/2)sin(2a) (dividing both sides by 2)
Substituting this into the RHS: RHS = 1 - ((1/2)sin(2a))(cos^2(a))
Using the double-angle identity for cosine: cos(2a) = cos^2(a) - sin^2(a) cos^2(a) = cos(2a) + sin^2(a)
Substituting this into the RHS: RHS = 1 - ((1/2)sin(2a))(cos(2a) + sin^2(a))
Expanding the multiplication: RHS = 1 - (1/2)sin(2a)cos(2a) - (1/2)sin^3(a)
Now, we can use the double-angle identity for sine: sin(2a) = 2sin(a)cos(a) RHS = 1 - (1/2)(2sin(a)cos(a))(cos(2a)) - (1/2)sin^3(a)
Simplifying: RHS = 1 - sin(a)cos(2a) - (1/2)sin^3(a)
Finally, using the double-angle identity for cosine: cos(2a) = 1 - 2sin^2(a) RHS = 1 - sin(a)(1 - 2sin^2(a)) - (1/2)sin^3(a)
Expanding the multiplication: RHS = 1 - sin(a) + 2sin^3(a) - (1/2)sin^3(a)
Combining like terms: RHS = 1 - sin(a) + (3/2)sin^3(a)
Now, comparing the LHS and RHS: LHS = 1 + 2cos^4(a) - 2cos^2(a) RHS = 1 - sin(a) + (3/2)sin^3(a)
It appears that the expressions on the LHS and RHS are not equal to each other. The trigonometric identity you provided, sin^4(a) + cos^4(a) = 1 - 0.5sin^2(2a), is not valid.


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili